

Welcome to FONSim’s documentation!

Go to the Introduction page.

Note

This documentation is a work in progress.
Much content has yet to be written
and some of the already existing content has to be reorganized.

Indices and tables

	Index

	Module Index

	Search Page

Footnotes

Introduction

Welcome to the documentation of the FONSim library!

It is hoped that this documentation helps the reader
in exploring FONSim.
If something appears missing: no worries,
please send an email to one of the developers
and they’ll kindly try to help you forward.

How to get started with FONSim

It is suggested to follow the tutorials in this documentation.
These ought to familiarize the reader with the basic usage of FONSim.
Many users will want to extend FONSim,
as the included standard functionality
is unlikely to fully support their research case.
They will want to continue into the code documentation,
which discusses the five main parts of FONSim.

Installation:
FONSim is available on the PyPI and therefore can be easily installed with
pip install fonsim.
For more detailed intallation instructions,
see Installation.

Features

	Powerful and fast simulation backend

	Newton-Raphson method for handling nonlinear equations

	Backward Euler time discretization for stability

	Implicit component equations

	Fluid class

	custom fluids, e.g. non-Newtonian

	fallback functionality

	Toolset focused on soft robotics (SoRo) research

	read and process pv-curves

	Standard library of fluidic components

	Tubes, nodes, pressure sources, volume sources, containers, one-way valves, …

	Flow calculations

	Compressible flow approximations

	Laminar and turbulent flow based on Reynold number

	Major and minor losses (Darcy, Haaland, K-factor etc.)

	Preconfigured custom plot methods

	Export data for further processing as JSON file

	Cross platform

Goal and philosophy

The goal of FONSim is to greatly ease simulation of fluidic systems
in softrobotics research
by providing a set of often-needed system components
and analysis tools
and by automating the construction and solving of the resulting component and network equations
with an open-source, easily extensible library.

FONSim is designed in the first place
for usage in research environments,
where flexibility and easy-to-experiment-with software are key.
Therefore, FONSim is fully written in relatively easily-read Python code
such that it is doable to inspect and extend FONSim
without investing too much time and effort.
While this choice for Python (versus, for example, C or C++)
means that FONSim will not excel in solving speed,
this is compensated for by Python being much easier to use.
Finally, the speed difference is not that large,
as for most of the time-consuming numerical maths
the Numpy library is used,
which under the hood relies on highly-optimized C and FORTRAN code.

FONSim does not have a GUI (Graphical User Interface).
While this results in a steeper learning curve in the beginning,
defining systems using code (and not using a GUI)
does have two mayor advantages.
The first advantage is that code is far more powerful that a GUI.
Defining and connecting hundreds of system components
can be done in a few lines using appropriate constructs such as for-loops.
The second advantages is that Python code is eay to collaborate on
and to version manage,
for example using industry-standard tools like Git.

FONSim consists of five parts.
While these parts depend on each other,
they are not finely ingrained to increase flexibility
and ease maintainability.
The first part is the core and is application-agnostic (!).
It is used just as easily to simulate kinematics
as fluidic networks.
Two other parts are the standard components and fluids,
which define most common components used in softrobotics research.
Finally, the three last parts provide some smaller functionality
for data visualization, some data IO
and a function generator.

Contributing

Ways to contribute to FONSim

	There are several ways to contribute to the FONSim project:
	
	Provide feedback about your usage experience.

	Ask a question.

	Suggest an improvement, be it to the documentation, the code or anything else.

	Implement an improvement yourself - please see Contribution process.

For all the above, users can email one of the developers
or open a new issue on GitLab issues.
Once there are more developers, a more appropriate discussion place will be opened.

Contribution process

	Check for open issues or open a new issue.

	Fork the FONSim repository on GitLab.

	Make your changes.
Don’t forget to add yourself to CONTRIBUTORS.txt!

	Send a pull request.
If no response, email one of the maintainers.

Before submitting the pull request, as a general rule:
- Any code change should come with appropriate tests and documentation.
- All tests should pass.

FAQ

…

Footnotes

Development

	Introduction
	Branching

	To get this repo locally

	Create a local install

	Development tools

	Style guide

	Documentation
	Introduction

	Local compilation

	Compiling autodocs

	Updating ReadTheDocs

Footnotes

Introduction

This file contains some generic information about the development of FONSim.

Branching

The FONS project branching is based on the
[Driessen or git-flow model](https://nvie.com/posts/a-successful-git-branching-model/).
Put simply,
the master branch is reserved for production-ready code.
All code in master should be stable and usable.
The dev branch contains the latest developed features,
yet as a result the software is not as stable.
The actual features (and improvements in general) are developed in the
feature branches, for example feature-plotting.

To get this repo locally

1. Clone the repo (notice the $ - this means to do it in a terminal/console).
The directory with the project will be located in the current working directory of the terminal.

$ git clone https://gitlab.com/abaeyens/fonsim.git

	Go in the created directory (note: one can use TAB for autocompletion)

$ cd fonsim

Create a local install

A local install allows to try out the library locally.
This can be useful during development.
First, rename the project root directory to fonsim (default name after Git clone: fons).
Second, run in the project root directory:

$ python -m pip install -e .

This installs the FONS package such that it is accessible
like all other Python packages, e.g. using import fonsim.
The -e option denotes that it uses a symbolic link:
code changes in the project directory (including branch switching)
take effect at the first following import.
No re-installation is required.

Note: python should refer to Python 3.
You may have to write python3 to avoid using Python 2.

Note: there appear to be problems with this method on some Windows machines.

Note: if you want to install several versions of the same package on your system,
for example a stable version from PyPi
and a development version from a local install,
you may want to use a
[Python virtual environment](https://docs.python.org/3/tutorial/venv.html).

Development tools

A git repository history visualizer tool like
[gitg](https://wiki.gnome.org/Apps/Gitg/)
can be helpful in developing this software.
It shows the relations between version branches visually,
lists all commits and allows to see the exact changes
were made in a particular commit.
In addition, it can show uncommitted changes.

Gitlab provides similar tools as a web version like the
[GitLab graph](https://gitlab.com/abaeyens/fonsim/-/network/master).

Style guide

https://google.github.io/styleguide/pyguide.html.

Footnotes

Documentation

Note

This document is a work in progress.

Introduction

The documentation of the FONSim project resides together with the code in the GitLab repository
in the directory docs/source.
This directory contains the documentation source files, written in ReStructuredText (RST).
All RST files in the directory autodoc are generated using tools
while the other RST files, such as the one used to render this document,
are compiled manually.

These ReStructuredText files are rendered to HTML viewable in a browser using Sphinx.
This HTML documentation is then hosted on the internet
thanks to the ReadTheDocs organization.
The ReadTheDocs servers look at the FONSim GitLab repository
and more or less rebuilds the documentation every time
the codebase on the GitLab repository changes.

The Sphinx + ReadTheDocs documentation has a nice “How To” guide:
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/index.html
The FONSim project mostly adheres to the default choices.

The rest of this documents discusses how to build the documentation.

Local compilation

The output HTML files
reside in docs/build/
and can be viewed in a web browser.
They closely resemble those that will be built by the ReadTheDocs server
(their process is slightly different though).

First time:

cd docs
sphinx-build -b html source/ build/

Thereafter:

cd docs
make clean
make html

The make clean is preferable not omitted
as doing so tends to lead to not updating files that should have been updated.

Compiling autodocs

In short,
the Sphinx autodocs functionality takes the codebase,
strips all the code away and dresses the docstrings
in nice RST files.
These RST files only contain references to the docstrings
and therefore not the docstrings themselves.
Therefore, it is not necessary to rerun the Sphinx autodocs
unless major changes to the code structure are made.
The generated autodocs reside in the directory docs/source/autodocs.

cd docs
sphinx-apidoc -o ./source/autodoc ../src/fonsim -f
rm source/autodoc/modules.rst
rm source/autodoc/fonsim.rst

The files modules.rst and fonsim.rst are deleted
to avoid generating
‘WARNING: document isn’t included in any toctree’.

Updating ReadTheDocs

The ReadTheDocs server is configured to look at the GitLab repository
and recompiles the documentation automatically.
However, it will fail at the smallest error,
so it is preferable to check the documentation source files first
by doing a local compilation and observing the output.

Footnotes

Release log

Upcoming releases

0.3b: Spring 2023

The first beta release!

	Changes
	
	Introduce the vastly improved solver.
Currently (January 2023) resolving
some minor issues
and adding tests.

Previous releases

0.2a: 2023, February 04

The second release of FONSim
focuses on cleaning up the codebase,
improving documentation to make the codebase
attractive to new users,
and the introduction
of the autocall and autodiff functionality.

	Changes
	
	Introduce autocall:
in component definition,
reference variables and states by their label,
removing the requirement to work with arrays and indices.

	Introduce autodiff:
in component definition, calculate derivatives
automatically using numerical differentiation,
removing the requirement to specify them manually.

	Introduce more than 100 tests (PyTest framework)
covering most of FONSim’s codebase.

	Documentation (tutorials + formal codedoc) on readthedocs
(went online spring 2022).

	Many bugfixes and code, UI and documentation improvements.
Some breaking changes were made.

0.1a5: 2021, March 24

Initial release of FONSim on PyPI.

Footnotes

Introduction

TODO write some introduction to the tutorials here,
perhaps with a short discussion of the learned FONSim features
in each tutorial or so./
TODO remove index below once doc reaches maturity.

Index

2.1 Installing FONSim
2.2 A first network
2.3 A more complex network
2.5 Balloon actuators: exploiting bistability
2.7 Simulation data viewing
2.8 Solver options
2.9 More complex systems
2.10 Defining a custom component
2.11 A refrigerator

If you have any thoughts, ideas, … for improving this tutorial,
sharing them would be greatly appreciated.

Footnotes

Installation

To install FONSim, follow these four steps:

	Step 0: Installing Python 3
	FONSim is a Python library and therefore requires a Python interpreter.
See www.python.org for the appropriate download and installation instructions
for your operating system.

	Notes
	
	On many Linux desktops Python 3 comes preinstalled
and this step can be safely skipped.

	To test whether a Python interpreter has been installed,
open a terminal window and run python or python3.
If both return an error messages, there is no Python interpreter installed.

	Step 1: Install PIP
	TheF ONSim library will be installed using PIP.
To install PIP, see https://pip.pypa.io/en/stable/installation/.
To test whether PIP is installed, open a Python shell
(for example, by starting a command line and running python3 or python)
and run pip.

	Step 2: Installing FONSim using PIP
	Installing FONSim is most easily done using PIP.
This method installs from PyPI, the Python Package Index.
In terminal, run pip install fonsim.

For installing FONSim from source, please see the development documentation.

	Step 3: Testing the installation
	Open a Python shell
and run, in the Python shell, import fonsim.
If an error is returned, there is an issue with the installation.

Footnotes

A first network

In this first tutorial
a small fluidic network is built and simulated.
While still limited in complexity,
this simple example shows a typical usage of the FONSim library,
including component creation, system definition,
simulation and data visualization.
In later tutorials, the many aspects of FONSim are explored more in depth.

Note

It might be relevant to note that Python variables
are by reference if the variable is mutable.
The code example below illustrates this.
It prints ‘[4, 2, 3]’ and not ‘[1, 2, 3]’.
If it is desired to copy object data and not the reference to it,
use the Python copy library[#1].

Create a List instance.
a = [1, 2, 3]
Copy the _reference_ to the object.
b = a
Change variable 'b', which will also change 'a',
because they point to the same data.
b[0] = 4
Print 'a' to show that it has been changed.
This will print '[4, 2, 3]' and not '[1, 2, 3]'.
print(a)

Full script:
01.py.

The first step is to import two required modules,
Respectively FONSim and Matplotlib.
The latter will be used for plotting the simulation results.

10# Import fonsim package, for building and simulating a fluidic system
11import fonsim as fons
12# Import matplotlib package, for plotting the simulation results
13import matplotlib.pyplot as plt

Next we create a System object called ‘system’
to which we will add components.
The ‘system’ object will contain all components in the system
and how these are connected to each other.

16# Create a new pneumatic system
17system = fons.System()

Here we create and add components to the system.
One of the ways to create a Component instance
is to use FONSim’s standard library,
as is done here with mycomponent = fons.PressureSource....
The object gets label ‘source_00’.
The label can be any string
as long as it only occurs once per system.
The line thereafter,
the created object, named ‘mycomponent’,
is added to the system using the System.add() method.

In the following two lines
the same is done, yet no variable that references to the component,
such as ‘mycomponent’, is kept.
Keeping a variable that references to the component
is not necessary because components can be easily retrieved
by their label
by calling the method :py:meth`.System.get`
with as argument the component label
(example: system.get('source_00')).

22# Create components and add them to the system
23# Note: for now, only take major (pipe friction) losses into account.
24mycomponent = fons.PressureSource("source_00", pressure=2e5)
25system += mycomponent
26system += fons.Container("container_00", fluid=fluid, volume=50e-6)
27system += fons.CircularTube("tube_00", fluid=fluid, diameter=2e-3, length=0.60)

The pressure source is instantiated with a constant pressure of 2e5 Pa.
Time dependent pressures are also possible,
which will be discussed in the next tutorial.

Now that the components are defined, they are connected to each other.
Here, no specifics about how exactly the components should be connected to each other
are given, and FONSim will therefore choose defaults.
After this step, the networked system is fully defined.

29# Connect the components to each other.
30system.connect("tube_00", "source_00")

The next step is to simulate the system.
A Simulation instance named ‘sim’ is created
which will hold the system object
and all parameters relevant for the simulation.
Only one simulation parameter is given, namely the duration in seconds
for which the system has to be simulated.
Other parameters, such as the simulation timestep,
are not specified and will therefore be chosen automatically by FONSim.

33# Let's simulate the system!
34sim = fons.Simulation(system, duration=0.3)

The simulation can now be run:

35# Run the simulation
36sim.run()

Finally, the simulation results are plotted using the Matplotlib library.
For matplotlib tutorials,
please refer to
the Matplotlib Pyplot introduction[#2].

There are currently two standard ways to plot simulation data.
The first is to manually fetch the simulation data,
plot it and add the legend and axis labels.
The second is to FONSim’s built-in plotting functionality,
which results in quasi the same result as the first option
but with far less work from the user.
This tutorial discusses achieving the same result with both methods.

The first two code lines prepare the plot,
after which the simulation data is plotted.
The simulation data is discretized in the time domain.
The time array is in the Simulation.times attribute
and is accessed here using sim.times.
The simulation data array is accessed through the components.
First, the reference to the component is retrieved from the system,
here using system.get("source_00").
Then, the array is retrieved from the component,
again using ‘get’.
The arguments of the Component.get() method are the label of the variable
and, for some simple components optional, the port.
For example, the tube (CircularTube) has two ports,
which are labeled ‘a’ and ‘b’.
All fluidic components have at least one ‘pressure’ variable
and one ‘massflow’ variable.
A list of the variable and port names of each component type
can be found in the docstring of that component type,
which can be retrieved by calling the help() function on the object
in a Python shell, for example help(system.get("source_00")).
Some IDEs show this docstring after hovering with the mouse
over the code in question.

43# Manual method
44fig, axs = plt.subplots(3, sharex=True)
45fig.suptitle("Simulation results")
46axs[0].plot(sim.times, system.get("source_00").get('pressure')*1e-5, label='source_00')
47axs[0].plot(sim.times, system.get("container_00").get('pressure')*1e-5, label='container_00')
48axs[0].set_ylabel('pressure [bar]')
49axs[1].plot(sim.times, system.get("container_00").get_state('mass')*1e3, label='container_00')
50axs[1].set_ylabel('mass [g]')
51axs[2].plot(sim.times, system.get("source_00").get('massflow')*1e3, label='source_00')
52axs[2].plot(sim.times, system.get("container_00").get('massflow')*1e3, label='container_00')
53axs[2].set_ylabel('mass flow [g/s]')
54axs[2].set_xlabel('time [s]')
55for a in axs: a.legend()

The simulation arrays denoting a pressure are multiplied with ‘1e-5’
because the simulation results for pressure are stored in unit Pa
while the plot y-axis unit is bar (1 bar = 1e5 Pa).

Next, almost the same result is achieved using the FONSim plotting functionality.
The third line
plots the pressure of the components labeled source_00 and container_00
with unit bar.

58# Automatic method
59fig, axs = plt.subplots(3, sharex=True)
60fig.suptitle("Simulation results")
61fons.plot(axs[0], sim, 'pressure', unit='bar', components=('source_00', 'container_00'))
62fons.plot_state(axs[1], sim, 'mass', unit='g', components=('container_00',))
63fons.plot(axs[2], sim, 'massflow', unit='g/s', components=('source_00', 'container_00'))
64axs[2].set_xlabel('time [s]')
65plt.show()

The figure below shows the image
achieved with the second method.

[image: ../_images/Figure_01.png]

Figure 1

To finish, a brief discussion of the simulation results
shown in Figure 1.
The container pressure in the top graph
starts around 1 bar
because the simulator assumes
that at the start of the simulation
there was already some air in the container
such that its pressure equalled
atmospheric pressure.
Therefore the container also starts out
with a mass of air of around 0.06 g (middle graph).

As the air flows through the tube from the source to the container,
the container fills with air and its pressure increases
until its pressure equals that of the source.
It is apparent that
the system by rough approximation behaves like
a first-order linear low-pass filter
exposed to a step input.

The bottom plot shows the massflow through the tube
(which, the sign not considered,
equals that of the source and the container).
Of particular interest here are the two flow regimes,
turbulent and laminar.
Initially, the pressure difference is large,
the flow speeds are high,
resulting in a high Reynolds number
and therefore turbulent flow.
Around 0.14 s the massflow has decreased sufficiently
for the flow regime to change to laminar,
which causes the small ‘bubble’
around 0.16 s.

It is hoped that this first tutorial provided
a not-to-steep introduction to FONSim
while still providing a good overview
of how FONSim is designed to be used.

Footnotes

[#1]
https://docs.python.org/3/library/copy.html

[#2]
https://matplotlib.org/stable/tutorials/introductory/pyplot.html

A more complex network

This second tutorial
extends the network seen in the first
with two more tubes and a container.
The component connection syntax is elaborated
together with the concepts terminal and node.
Furthermore,
the usage of the built-in wave generator
is demonstrated
and an introduction to fluids is given.

The following schematic shows
the network that will be built
and simulated:

 -=- container
src -=- |
 -=- container

Full script:
03.py.

In the first tutorial,
the pressure gave a constant pressure.
More useful is if the pressure varies over time.
This is easily achieved using the wave.custom.Custom class
included in FONSim.
Here a simple rectangular wave is chosen.
The desired wave is specified as a list of tuples,
with each tuple of the form (x, y),
with x the time (unit s) where the pressure rises to y (unitless).
In this example, the pressure rises to 0.900 bar relative at t = 0 s,
drops to 0.100 bar relative at t = 0.50 s
and rises to 0.500 bar relative at t = 1.00 s.
The multiplier 1e5 converts the pressures specified in bar
to Pa
and the atmospheric pressure of 1013 hPa (pressure_atmospheric) is added
because FONSim works with absolute pressures
while those specified in the wave are relative.

17# Create wave function for pressure source
18waves = [(0, 0.900), (0.5, 0.100), (1.0, 0.500)]
19wave_function = fons.wave.Custom(waves)*1e5\
20 + fons.pressure_atmospheric

The system is constructed,
and the components are defined.
The applicable component equations depend on the used fluid
and therefore it is necessary to specify the fluid
when creating the component.
Given that all components are constant-volume,
a simulation with an incompressible fluid
would be rather boring,
therefore the compressible fluid air is chosen.
FONSim supports Newtonian ideal gasses
with the IdealCompressible class.
Several ideal gasses are included,
see fluids.IdealCompressible.

22# Create system
23system = fons.System()
24# Select fluid
25fluid = fons.air
26# Create components and add them to the system
27system.add(fons.PressureSource('source', pressure=wave_function))
28system.add(fons.Container('container_0', fluid=fluid, volume=100e-6))
29system.add(fons.Container('container_1', fluid=fluid, volume=100e-6))
30system.add(fons.CircularTube('tube_0', fluid=fluid, diameter=2e-3, length=0.10))
31system.add(fons.CircularTube('tube_1', fluid=fluid, diameter=2e-3, length=0.02))
32system.add(fons.CircularTube('tube_2', fluid=fluid, diameter=2e-3, length=0.70))

Next, connect the components to each other.
Component objects are connected to each other
by assigning their Terminal objects
to a common Node.
Put differently,
terminals that belong to a common node
are considered to be connected to each other,
and the components belonging to these terminals
are also considered to be connected to each other.

In the previous tutorial,
no terminals were specified
and the choice was left to FONSim,
which tends to select a yet unconnected terminal.
Here this behaviour is undesired
as we would like to connect the ends of three tubes
to each other.
The first code line
asks to connect terminal ‘a’ of component ‘tube_0’
to a terminal of component ‘source’.
Terminal ‘b’ of ‘tube_0’
gets connected to terminal ‘a’ of ‘tube_1’ and terminal ‘a’ of ‘tube_2’.
The docstring of the component ought to contain
the labels of the terminals,
see for example CircularTube.

33# Connect components to each other
34system.connect(('tube_0', 'a'), 'source')
35system.connect(('tube_0', 'b'), ('tube_1', 'a'))
36system.connect(('tube_0', 'b'), ('tube_2', 'a'))
37system.connect('tube_1', 'container_0')
38system.connect('tube_2', 'container_1')

Note

The Node objects ought not to be confused
with nodes as they occur in fluidic networks.
FONSim sees a system as a
unidirected graph[#1]
with edges/links/lines (FONSim: Component)
and nodes/vertices/points (FONSim: Node).
Sometimes, the FONSim and fluidic meaning of ‘node’
coincide, such as when connecting the ends of three tubes together.
However, most often they do not.

With the system fully defined, the simulation is run.
The previous example showed the two manual and automatic plotting methods.
The freedom offered by the former
is not required here and therefore the latter is used.
For plotting the massflow through ‘tube_2’,
the terminal to take the massflow from is specified (‘a’)
in a similar way as for connecting the components.
This gives the plot shown in Figure 1.

44# Plot results
45fig, axs = plt.subplots(3, sharex=True)
46fig.suptitle("Simulation results")
47fons.plot(axs[0], sim, 'pressure', 'bar', ('source', 'container_0', 'container_1'))
48fons.plot_state(axs[1], sim, 'mass', 'g', ('container_0', 'container_1'))
49fons.plot(axs[2], sim, 'massflow', 'g/s', ('tube_0', 'tube_1', ('tube_2', 'a')))
50plt.show()

[image: ../_images/Figure_02.png]

Figure 1

To finish, a brief discussion of the simulation results
shown in Figure 1.
Perhaps first look back
on the given tube lengths.
The tube from the source to the Y-split
has length 10 cm,
the tube from the split to the first container
(‘container_0’)
has length 2 cm
and the the tube from the split to the second actuator
(‘container_1’)
is with 70 cm far longer than the other two tubes.

The pressure (top plot)
in the first container
behaves similarly
to the container in the previously tutorial.
It was to be expected
that the behaviour of this component
is mostly governed by the source
as it is much closer to the source
than to the other container.
Meanwhile,
the pressure in the second container
shows characteristics
of a double first-order low-pass filter,
in particular
that the pressure curve starts almost horizontally
(in an ideal such a filter, it would start perfectly horizontally).

This also shows in massflow through the tubes
(bottom plot):
the flow through ‘tube_2’
starts from almost zero
(even while the source has increased its pressure,
little air has yet flown,
so both containers maintain their initial pressure).

Feel free to play with the component parameters,
such as the diameter and length of the tubes,
and see how they influence the simulation results.

The next tutorial will focus on balloon actuators
with their pv-curves and nonlinear behaviour.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Graph_theory

Balloon actuators

The previous two examples already showed how to use several main features of FONSim,
however, the observed behaviour of the container components was rather simple.
Balloon actuators provide a more interesting component
and are studied extensively in the field of soft robotics (SoRo).
One of their special properties is their nonlinear behaviour.
On one hand this makes them somewhat difficult to use for existing applications,
but it also opens a wide array of possibilities for new applications
such as hardware-encoded sequencing.

PV curves

The behaviour of these balloon actuators is specified as a pressure-volume curve
or pv-curve.
This curve is usually derived from measurements.
FONSim contains an example measurements file of a balloon actuator:
Measurement_60mm_balloon_actuator_01.csv.
TODO add reference to paper.

Let’s have a look at the first five lines of this CSV file:

1Latex balloon actuator 60 mm,2017-11-16,MECH1A1
2Time,Volume,Pressure
3s,ml,mbar
414.31,1,22
517.01,2.01,280

The file is split in four parts
(explained more in depth in PVCurve):

	First line: information about the file.
For example, the measurement occurred in 2017, November 16.

	Second line: keys of data columns.
Here we’re only interested in volume and pressure,
though time is listed as well.

	Third line: units of data columns.

	Fourth line and further: the actual numerical data.

Lets read this file using FONSim and plot the curve.
First, the CSV file is loaded into a PVCurve object.
The resulting object has two attributes, v and p,
which respectively are 1D Numpy arrays of volume and pressures.
Their units have been automatically adjusted such they conform to SI base units.
The pressure has also been adjusted to absolute
because the measured pressure in the CSV file
was relative to atmospheric pressure.

17# Load pvcurve in PVCurve object
18pvcurve = fons.data.PVCurve(data=ppath, pressure_reference='relative')
19
20# Plot the curve
21fig, ax = plt.subplots(1)
22ax.plot(pvcurve.v * 1e6, pvcurve.p * 1e-5)
23ax.set_ylabel('absolute pressure [bar]')
24ax.set_xlabel('volume [ml]')
25plt.show()

Full file: 06.py.
The plotting result:

[image: ../_images/Figure_03.png]

Figure 1: PV curve of a balloon actuator

Figure 1 shows what makes these balloon actuators so interesting:
the non-monotonically increasing pressure.
As a result, for some pressures there are multiple solutions
for the volume of the actuator, three in this case.
Note the local pressure maximum of 1.87 bar
around a volume of 6 ml (the ‘hill’)
and a local pressure minimum of 1.58 bar
around a volume of 21 ml (the ‘dip’).

Single balloon actuator

Let’s do a simulation with this balloon actuator!
Full file: 04.py.

After the usual preamble,
the pressure reference and the fluid are selected:

15# Pressure reference
16waves = [(0, 0.890), (1, 0.650), (2, 0.550), (3, 0.650)]
17wave_function = fons.wave.Custom(waves)*1e5 + fons.pressure_atmospheric
18
19# Select a fluid
20# Previous examples required a compressible fluid.
21# This one doesn't, feel free to try with an incompressible fluid (e.g. water)!
22fluid = fons.air

The previous required a compressible fluid
as all components were constant-volume.
In this example, the balloon actuators can vary their volume,
so feel free to try with an incompressible fluid (for example, water)!

Next, the system is built and the simulation is run.
The system consists of one pressure source,
one balloon actuator (FreeActuator)
and a tube connecting the former two.

The FreeActuator component allows to simulate components characterized by a pv-curve
and therefore provides an excellent fit for simulating balloon actuators.
If the pvcurve is available as a CSV file,
the first two emphasized lines can be omitted
and the curve filepath can be passed directly to the parameter curve
of FreeActuator.

24# Create system
25# The FreeActuator allows to simulate components characterized by a pvcurve.
26# The curve argument can take a pvcurve specified as a CSV file.
27system = fons.System()
28system.add(fons.PressureSource('source', pressure=wave_function))
29filepath = 'resources/Measurement_60mm_balloon_actuator_01.csv'
30ppath = str(ir.files('fonsim').joinpath(filepath))
31system.add(fons.FreeActuator('actu', fluid=fluid, curve=ppath))
32system.add(fons.CircularTube('tube', fluid=fluid, diameter=2e-3, length=0.60))
33system.connect('tube', 'source')
34system.connect('tube', 'actu')
35
36# Create and run simulation
37sim = fons.Simulation(system, duration=4)
38sim.run()

Let’s plot the simulation results!
Like in the previous example,
we’ll use the FONSim built-in plotting functionality:

40# Plot simulation results
41fig, axs = plt.subplots(3, sharex=True)
42fons.plot(axs[0], sim, 'pressure', 'bar', ('source', 'actu'))
43axs[0].set_ylim(1.4, 2.0)
44fons.plot_state(axs[1], sim, 'mass', 'g', ['actu'])
45fons.plot(axs[2], sim, 'massflow', 'g/s', ['tube'])
46for a in axs: a.legend()
47plt.show()

This outputs the following plot figure:

[image: ../_images/Figure_04.png]

Figure 2: Simulation output

To finish, a brief discussion of the simulation results
shown in Figure 2.
The simulation starts
with an increase of absolute pressure to 1.89 bar,
the actuator fully inflates
as this pressure is larger than
the pvcurve hill.
Shortly after the pvcurve has been fully inflated,
the pressure decreases back to 1.65 bar,
just above the pvcurve dip.
The actuator therefore stays mostly inflated,
as is evidenced by more than half of the mass
remaining, shown in the middle graph of Figure 2.

At time = 2.0 s the pressure drops just 0.1 bar,
to 1.55 bar.
Nevertheless, the actuator now deflates almost fully.
Increasing the pressure again at time = 3.0 s
has little effect on the actuator volume
(middle graph of Figure 2).

Two balloon actuators

In this second simulation,
we’ll look at two balloon actuators in series
and show a basic example of hardware sequencing achieved
by exploiting a combination of actuator nonlinearity and flow restriction.
It is based on TODO paper reference.
The code is very similar to the previous simulation,
so only the relevant differences are discussed here.
Full file: 07.py.

Pressure reference:

16# Pressure reference
17p1 = 0.890
18p2 = 0.650
19p3 = 0.200
20waves = [(0.0, p2),
21 (1.0, p1), (1.3, p2),
22 (3.0, p1), (3.5, p2),
23 (5.0, p3), (5.3, p2),
24 (7.0, p3), (7.4, p2)]
25wave_function = fons.wave.Custom(waves, time_notation='absolute')*1e5\
26 + fons.pressure_atmospheric

tubes:

system.add(fons.CircularTube('tube_0', fluid=fluid, diameter=2e-3, length=1.20))
system.add(fons.CircularTube('tube_1', fluid=fluid, diameter=2e-3, length=0.60))

and the plotting:

Plot simulation results
fig, axs = plt.subplots(3, sharex=True)
fons.plot(axs[0], sim, 'pressure', 'bar', ('source', 'actu_0', 'actu_1'))
axs[0].set_ylim(1.1, 2.0)
fons.plot_state(axs[1], sim, 'mass', 'g', ['actu_0', 'actu_1'])
fons.plot(axs[2], sim, 'massflow', 'g/s', ['tube_0', 'tube_1'])
for a in axs: a.legend()
plt.show(block=False)

Also do a parametric plot
rho = fluid.rho if hasattr(fluid, 'rho') else fluid.rho_stp
p_atm = fons.pressure_atmospheric
m_a0 = system.get('actu_0').get_state('mass')
p_a0 = system.get('actu_0').get('pressure')
v_a0 = m_a0 / rho * p_atm / p_a0
m_a1 = system.get('actu_1').get_state('mass')
p_a1 = system.get('actu_1').get('pressure')
v_a1 = m_a1 / rho * p_atm / p_a1

fig, ax = plt.subplots(1)
ax.plot(v_a0 * 1e6, v_a1 * 1e6)
ax.set_aspect('equal')
ax.set_xlabel('volume actuator 0 [ml]')
ax.set_ylabel('volume actuator 1 [ml]')
plt.show()

This gives the following two figures:

[image: ../_images/Figure_05.png]

Figure 3: Simulation output

[image: ../_images/Figure_06.png]

Figure 4: Simulation output, actuator volumes

Figures 3 and 4 show the simulation results.
The middle graph of Figure 3
shows the achieved phase lag.
Even while actuator 0 is inflated first,
it is actuator 1 that is deflated last.
Also note that the system state between the transitions is stable,
as is shown by the constant pressure and mass in these region.
These regions can thus be elongated or shortened
by changing the pressure reference timings.

This phase lag is also well visible in Figure 4,
which plots a virtual path traversed by the actuator volumes.
In research work TODO,
this phase lag was used to produce a stepping motion
for a legged robot,
where one actuator moved the feet horizontally
and another one moved the feet vertically.

Footnotes

Custom components

FONSim provides several ready-to-use components
in its standard library.
However, there’s a good chance you will
now and then want
to define and use your own components.
This tutorial discusses
how to do this
by redefining the Container component.

Full script, including usage example:
custom_component.py.

Component definition

Components are defined as Python classes
that inherit from the base class Component.
The following snippet defines
our new Container class and initializes the base class,
and also provides some documentation.
n addition to the mandatory label argument,
we have added two custom arguments:
the fluid and the container volume,
as both of these influence the behavior of the component.

11class Container(fons.Component):
12 """
13 A Container object is a (by default, empty) container or tank.
14 It has one terminal named 'a'.
15 It has one state named 'mass',
16 which represents the mass of the fluid inside the container.
17
18 :param label: label
19 :param fluid: fluid, must be compressible
20 :param volume: volume of the container in m^3.
21 """
22 def __init__(self, label=None, fluid=None, volume=None):
23 super().__init__(label)

Next, we need to define the possibilities
for the component to interact with other components
by instantiating and adding a Terminal.
This is done in the following five lines:

26 self.set_terminals(
27 fons.Terminal('a',
28 [fons.Variable('pressure', 'across',
29 cnorm.pressure_atmospheric, label='p'),
30 fons.Variable('massflow', 'through', label='mf')]))

The second line gives the terminal its label ‘a’,
and the next three lines add the variables
that constitute the terminal.
Two terminals from two different components
that are connected together
should have the same variable _keys_.
In line with other components in the FONSim standard library,
we are working in a simple fluidical domain
with the keys ‘pressure’ and ‘massflow’
(we assume the fluid temperature is constant throughout the system).
Following classical system modelling theory,
the former is an ‘across’ variable while the latter is an ‘through’ variable.
Both variables receive labels,
respectively ‘p’ and ‘mf’,
to refer to them
in the further component definition.

Note

At each internal node,
which internally is
a group of terminals that are connected together,
FONSim enforces that at any simulation time step
all across variables are equal in value
and that all through variables sum to zero.
Internal nodes are normally not of relevance to the user
and they do not represent physical elements (e.g. T-piece).

The container has a single state:
the fluid mass ‘m’ inside.
Its initial value is set to
the fluid mass that corresponds
to standard temperature and pressure (STP)
(following the ideal gas law).
This is easily added with the following two lines:

31 self.set_states(fons.Variable('mass', 'local',
32 volume*fluid.rho_stp, label='m'))

After the terminals and states have been defined,
we need to describe the behaviour of the component.
This is done by adding the two class methods
update_state and evaluate.

The update_state method, shown in the excerpt below,
defines how the state should change over time
given particular values at the terminals.
It is formulated as an explicit finite difference equation
(hence the timestep dt is provided as argument).
The two arguments ‘mf’ and ‘m’ should match
with the variable labels given earlier.
In the case of our container,
this is a simple finite integral
(the mass inside changes over time as there is massflow in- and out).

35 @self.auto_state
36 def update_state(dt, mf, m):
37 m_new = m + mf*dt
38 return {'m': m_new}
39 self.update_state = update_state

The latter (evaluate) is shown in the following snippet
and defines how the terminal and state variable values relate.
It is formulated as an implicit equation.
In the case of our container,
it is the ideal gas law for a fluid with a constant temperature.
One can add the argument t which will receive the value
of the current simulation time.
Here it is left out because the behaviour does not depend on time.

This is the end of the component definition.
FONSim takes care of estimating the derivatives.
Alternatively, we can specify them ourselves,
which is discussed in the next section.

Manual derivative definition

Sometimes it is necessary for stability
to manually specify the derivative.
It also increases the simulation speed.
The following example
shows the two methods
with the derivative definitions:

52 # With derivative specified
53 @self.auto_state
54 def update_state(dt, mf, m):
55 jacobian = {}
56 m_new = m + dt * mf
57 jacobian['m/p'] = 0
58 jacobian['m/mf'] = dt
59 return {'m': m_new}, jacobian
60 self.update_state = update_state
61
62 @self.auto
63 def evaluate(p, m):
64 mass_stp = volume*fluid.rho_stp
65 values, jacobian = np.zeros([1], dtype=float), [{}]
66 values[0] = m*cnorm.pressure_atmospheric - mass_stp*p
67 jacobian[0]['m'] = cnorm.pressure_atmospheric
68 jacobian[0]['p'] = -mass_stp
69 return values, jacobian
70 self.evaluate = evaluate

For the state update,
the derivatives are specified in the form
of a dictionary jacobian with as keys
strings of the partial derivatives.
For the evaluate method,
they are formulated
as a list of dictionaries
(also named jacobian).

Usage

To finish, the component can be used
like any other component.
For example,

85system.add(Container('container', fluid=fluid, volume=250e-6))

creates and adds a container to the system object
with a volume of 250 ml.
If desired, you can run the simulation coded in the example file
and view the resulting plot.

Conclusion

In this tutorial, we have discussed
how to create a custom component in FONSim
by redefining the Container component.
We have explained the component definition process,
including how to define the terminals,
states, and behavior of the component.
We have also demonstrated
how to use the custom component by creating an instance of it,
and using it in a system.
With this information,
you should now be able to create your own custom components
and use them in your FONSim simulations.

Footnotes

Introduction

Introduction to codedoc.

The codedoc has been generated using Sphinx from the docstrings in the code.

The text below
provides a high-abstraction-level introduction
to the FONSim codebase.

Main parts

FONSim consists of nine main parts.
Each part is discussed briefly.

	core:
This is the network simulation functionality.
It is written agnostically of the domain (fluidic, eletric, …) to be simulated.
This core is discussed in detail further on.

	components:
The standard library of fluidic components
with actuators, tubes, restrictors, sources etc.

	wave:
Signal generators: block wave, sine wave etc.

	data:
Functionality for handling data.
The files curve.py, pvcurve.py, dataseries.py and interpolate.py
ease working with pv-curves, including reading them in from CSV files.
The simulation data export functionality resides in writeout.py.

	fluid:
Defines how fluids should be specified
in the form of class definitions.
Currently supported are
ideal gasses and incompressible liquids.

	fluids:
Standard library of fluids with air, water etc.

	visual:
Plotting functionality specific to visualizing simulation results.

	conversion:
String comparison and unit conversion.

	constants:
Physical constants.

	resources:
Data files such as pv-curves in CSV format,
mostly used in examples and tests.

Core

The core contains all functionality that is required
for simulating networked system
but, as it is written domain-agnostic,
it does not contain any code specific to fluidic system.

The core consists of seven files, each discussed here.

	variable.py

Class definition of Variable.
Variable objects are used to tell to the solver
that there is a yet unknown timeseries
of numerical scalar values
that will have to be solved for during the simulation.
After running the simulation, for each Variable object
a 1D array of values will have been derived
that satisfies the given equations best.
To put it simply,
the solver uses the Variable objects
to keep reference of what numerical value
belongs to what equations.

A Variable has a key to indicate the medium it refers to
(for example, pressure, massflow, or temperature).
It also has an orientation to indicate
which network equations should be applied
when it is connected to other components
(or when it is used stand-alone).

	terminal.py

Class definition of Terminal.
A Terminal contains one or more Variable instances
that are often used alongside each other.
A Terminal can be connected to another terminal.
The solver automatically generates the network equations
(which relates the Variables of different components to each other)
from how the terminals are connected to each other.
Therefore, the Variables in a Terminal should be defined such
that they make physical sense.

In practice this often leads to two Variables,
one with orientation across
and another with orientation over.
Examples of typical pairs and their domain
include pressure and massflow (fluidic),
voltage and current (electric),
linear displacement and force (mechanical, linear),
rotational displacement and torque (mechanical, rotational).

	component.py

Class definition of the base class Component.
This class definition provides the functionality
common to all components.
Usable components such as actuators, sources etc.
inherit from this base class
and add the relevant Variables, Terminals
and internal equations.
In practice,
the class Component is never instantiated,
as doing so would create a component
without any physical usefulness.

	system.py and node.py

Class definitions of respectively System and Node.
A System object holds information
on which components it contains
and how they are connected to each other.
A connection between two terminals
(a connection is always between terminals,
not between components)
is recorded in a Node object.
A Node class instance contains of data
only a list of Terminals it is connected to,
the Node class mostly defines functionality
to manipulate Node objects.

While it is usual
to say that x terminals are connected to each other,
in the simulator this is handled
by connecting those x terminals
to a common node.
Each Node instance therefore contains the Terminals
the Node is connected to.
A Terminal is always connected to a Node,
and vice-versa.
A Terminal may not be connected
to more than one Node.
A Terminal does not know to which Node it is connected,
this information is only stored in the nodes.

	simulation.py

Class definition of Simulation.
This class provides functionality for:

	Deriving mathematical constructs
from a relationally-specified System object:
matrices, listing all equations etc.

	Evaluating all component equations

	Memory management

	Starting the the numerical simulation

For solving the resulting system of equations
it uses a solver.
The solvers are defined in solver.py.

Putting the relationally-specified System object
in a mathematical form is a computationally intensive task
and is done only once during the initialization
thanks to a cache system.

	solver.py

Numerical solvers.
These solvers assume particular functionality
of the class Simulation.

Footnotes

fonsim.core package

Submodules

fonsim.core.component module

Class Component

2020, July 21

	
class fonsim.core.component.Component(label)

	Bases: object

Components to build a system with.

TODO

States and variables
The state data (e.g. amount of fluid inside actuator)
is saved as 2D-array in the components themselves
(and the solver always refers to these)
while the argument data (e.g. pressure, flow in/out)
is saved as a list of _references_
to nameless 1D-arrays created by the solver.
The component object provides functionality for the solver
to allocate memory for the states,
but not for allocating the variables.
The solver takes care of calling these functions necessary.
The object property state_history holds the 2D-array
and object property argument_history holds a list
with references to the 1D-arrays.

	Parameters:

	label – Component name.

	
auto(func)

	

	
auto_state(func)

	

	
evaluate(values, jacobian_state, jacobian_arguments, state, arguments, elapsed_time)

	Evaluates the component internal equations.
This method should be static.

Note: only evaluate left-hand side (LH) of equation, equation should be structured such that RH is always zero.

	Parameters:

	
	values – array where the equation residuals will be stored.

	jacobian_state – array where the jacobian to the state will be stored.

	jacobian_arguments – array where the jacobian to the arguments will be stored.

	state – numerical values belonging to the state Variables.

	arguments – numerical values belonging to the Variables.

	elapsed_time – ? TODO.

	Returns:

	None

	
get(variable_key, terminal_label=None)

	Same as method self.get_all, but returns only the first return value.

	
get_all(variable_key, terminal_label=None)

	Get simulation results.
Supports ‘smart matching’ by comparing string distances.

	Parameters:

	
	variable_key – key of variable, e.g. ‘pressure’

	terminal_label – label of terminal, e.g. ‘a’

	Returns:

	Numpy ndarray object and Terminal object

	
get_state(label)

	Get simulation results.
Supports ‘smart matching’ by comparing string distances.

	Parameters:

	label – state label, e.g. ‘volume’

	Returns:

	Numpy ndarray object

	
get_terminal(terminallabel=None)

	Returns Terminal object.
If no label given,
returns the first unconnected terminal.
If label given,
returns terminal with that label.
If no terminal found, returns None.

	Parameters:

	terminallabel – Label of terminal

	Returns:

	Terminal object

	
set_arguments(*arguments)

	Overwrite component arguments list with the provided Variable
objects.

	Parameters:

	arguments – one or more Variable objects

	Returns:

	None

	
set_states(*states)

	Overwrite component states list with the provided Variable
objects.

	Parameters:

	states – one or more Variable objects

	Returns:

	None

	
set_terminals(*terminals)

	Overwrite component terminals list with the provided Terminal
objects and attach those terminals to the component.

	Parameters:

	terminals – one or more Terminal objects

	Returns:

	None

	
update_state(state_new, jacobian, state, arguments, dt)

	Evaluates the update to the component state.
This method should be static.

	Parameters:

	
	state_new – array where the new state values will be stored.

	jacobian – array where the jacobian to the arguments will be stored.

	state – numerical values belonging to the state Variables.

	arguments – numerical values belonging to the Variables.

	dt – time discretization timestep.

	Returns:

	None

fonsim.core.node module

Class Node

2021, January 14

	
class fonsim.core.node.Node(*terminals)

	Bases: object

Connection between multiple component terminals

	
add_terminals(*terminals)

	Connect terminals to the node

	Parameters:

	terminals – Terminal object. Multiple can be provided

	Returns:

	None

	
contains_terminal(terminal)

	Check if the node contains the requested terminal

	Parameters:

	terminal – Terminal object

	Returns:

	Boolean

	
get_variables(orientation=None, key=None)

	Get a list of all variables with the provided orientation and/or
key associated with the node.

	Parameters:

	
	orientation – optional string specifying requested variable
orientation

	key – optional string specifying requested variable key

	Returns:

	list of Variable objects

	
merge_node(node)

	Connect all terminals from another node to this node

	Parameters:

	node – Node object

	Returns:

	None

fonsim.core.setnumpythreads module

https://gitlab.com/abaeyens/fonsim/-/issues/19

2022, June 04

	
fonsim.core.setnumpythreads.setnumpythreads(nb_threads=1)

	

fonsim.core.simulation module

Class Simulation

2020, July 22

	
class fonsim.core.simulation.Simulation(system_to_simulate, duration=10, step=None, step_min=None, step_max=None, max_steps=0, verbose=0)

	Bases: object

Class to convert network information
(how the components are connected to each other)
and component information
(equations for each component)
to a single non-linear system of equations
(function vector + Jacobian)
describing the whole system.

Solving this system is to be done by a solver.
This object contains a solver object in the property self.solver.
(Future functionality: possibility to select a solver manually etc.)

The Class Solver interacts heavily with the System class
and expects the following methods to be available:

	evaluate_equations()

	update_state()

	equation_to_string()

as well as the following properties:

	system

	phi, H and A

	arguments

	nb_arguments and nb_network_equations

	times and duration and verbose

	Parameters:

	
	system_to_simulate – System object with components and how they are connected

	duration – amount of time the system will be simulated for

	step – initial time increment

	step_min – minimal time increment during the simulation

	step_max – maximal time increment during the simulation

	max_steps – maximum amount of time increments before the
simulation is terminated prematurely. A value of 0 disables this
behavior (default)

	verbose – level of information printed in the console
during the simulation. All messages belonging to a level with a
number lower than or equal to the provided parameter will be
displayed, with the possible levels being:

	-1: simulation start and end messages

	0 (default): simulation progress in % steps

	1: system matrices on iterations with bad convergence

	
check_issolvable()

	Warns when number of equations doesn’t equal number of unknowns.
:return: None

	
equation_to_string(equation_index)

	Return a string describing the equation with the provided index
in a human-readable format. For a network equation, this string
contains the involved variables and their coefficients. For a
component equation, this string mentions the component label and
the index of the equation in the list of equations of that
particular component.

	Parameters:

	equation_index – index of the row in the simulation
equation matrix corresponding to the desired equation

	Return eq_str:

	string representing the equation

	
evaluate_equations(simstep, g, H, elapsed_time, dt)

	Evaluate component equations to obtain evaluated function vector
(equation residuals) and jacobian.
This method will call the method Component.evaluate
on each component.
This method will also call the method Component.update_state
on each component.

Note: This function does not evaluate (or update) the network
equations (upper part of the jacobian ‘H’)!

	Parameters:

	
	simstep – simulation timestep index to start from

	g – numpy ndarray for the evaluated function vector

	H – numpy ndarray for the evaluated jacobian

	elapsed_time – time elapsed

	dt – timestep (0 for explicit Euler, dt for implicit Euler)

	Returns:

	None

	
extend_memory(nb_extra_steps)

	Increase the size of the simulation memory without overwriting
previous results. This deals with the same entities as described
in the documentation of initialize_memory

	Parameters:

	nb_extra_steps – amount of time steps by which to increase
the memory

	Returns:

	None

	
fill_network_matrix(A)

	Fill the network matrix.
The network matrix is constant over the simulation, at least
supposing the network configuration does not change. It is thus
sufficient to calculate it a single time.

There are two types of network equations, one for across
variables and one for through variables.
At each node, all across variables have to be equal. Thus for
each node n-1 equations, n being the number of components
attached to that node.
Concerning the through variables, the sum of all through
variables should be zero at each node, thus one equation for each
node.

	Parameters:

	A – system Jacobian matrix, numpy ndarray n x n, n=len(phi)

	Returns:

	None

	
init_matrixconstruction()

	Create some LUT-style lists and dicts
so data can be moved around quickly
in the simulation loop.

	Returns:

	None

	
initialize_memory(nb_steps)

	Initialize all arrays that will hold the simulation results
through time. This includes
- The vector with time values
- Component argument and state histories (in Component class)
- The simulation phi matrix with all arguments over time
All previously stored results are overwritten.
This method initializes the arrays with zeros
and therefore does not use the initial_value attribute
of the Variable objects.

	Parameters:

	nb_steps – estimated amount of time steps in the simulation

	Returns:

	None

	
map_phi_to_components(phi)

	Send addresses of arguments over time to components, so one can
get the data from the component without passing by the Simulation
object. Furthermore, it avoids duplicating the data.

	Parameters:

	phi – numpy ndarray m x n with the argument vector over
time (m = nb timesteps and n = nb arguments)

	Returns:

	None

	
map_state_to_components(state)

	Send addresses of state over time to components, so one can
get the data from the component without passing by the Simulation
object. Furthermore, it avoids duplicating the data.

	Parameters:

	state – numpy ndarray m x n with the state vector over
time (m = nb timesteps and n = nb states)

	Returns:

	None

	
print_equations()

	Print a human-readable representation of the full system of
equations to the console.

	Returns:

	None

	
run()

	Run simulation, with the parameters specified previously.

	Returns:

	None

	
set_initial_values_phi(step=0)

	Takes the initial values from the component argument Variable objects
and writes them to the simulation memory (matrix ‘phi’).

	Parameters:

	step – simulation step at which to write the initial value

	Returns:

	None

	
set_initial_values_state(step=0)

	Takes the initial values from the component state Variable objects
and writes them to the simulation memory (matrix ‘state’).

	Parameters:

	step – simulation step at which to write the initial value

	Returns:

	None

	
slice_memory(start_step, end_step)

	Decrease the size of the simulation memory by taking a slice out
of it. This deals with the same entities as described in the
documentation of initialize_memory

TODO update such that takes slice as argument

	Parameters:

	
	start_step – index of the first time step in the range to
maintain

	end_step – index of the first time step outside the range
to maintain

	Returns:

	None

	
update_state(simstep, dt)

	Update the state variables in all components using the arguments
in self.phi at step n + 1 (n = ‘simstep’).
This method will call the method Component.update_state
on each component.

	Parameters:

	
	simstep – simulation timestep index to start from

	dt – timestep

	Returns:

	None

fonsim.core.solver module

Classes with available solvers

A solver takes care of solving the (non-linear)
system of equations generated by the Simulation object.
This object can interact with the Simulation object.

The Simulation class expects the following methods
from the solver object:
- get_nb_steps_estimate()
- run_step(simulation_step_index)

	Current solvers:
	
	ImplicitEulerNewtonConstantTimeStep

	ImplicitEulerNewtonAdaptiveTimeStep

2020, July 23

	
class fonsim.core.solver.ImplicitEulerNewton(simulation)

	Bases: object

	
apply_solver_bias(bias=1e-12, step=0)

	Give elements in the solution vector a small positive value, to
ease starting the simulation

	Parameters:

	
	bias – bias value added to the solution vector entries

	step – simulation step for which this bias is applied

	Returns:

	None

	
get_all_variables(simstep)

	
	Parameters:

	simstep – simulation step at which variables are queried

	Returns:

	np array with the values of all arguments and component
states at the desired simulation step

	
get_residual(simstep, res=None)

	Evaluate the simulation system of equations at the provided
timestep to get the residual vector

	Parameters:

	
	simstep – index of simulation timestep at which the system
of equations is evaluated

	res – optional initialized residual vector that will be
overwritten by this function in place

	Returns:

	evaluated residual vector

	
newton_solver(step, iterations=100, alpha=1.0)

	Newton method for solving the system equations and storing the
solution in the simulation phi vector at an time step

	Parameters:

	
	step – step index for which the system will be solved and
the solution will be stored. The initialization for the solver
can be done externally by setting self.sim.phi[step] to the
initial guess

	iterations – maximum number of newton solver iterations.
100 (default) gives good results although it often converges in
one step and otherwise mostly in less than ten

	alpha – correction constant for damped Newton method

	Returns:

	flag indicating exit status of the solver for this step:
* 0: maximum amount of iterations reached without convergence
* 1: solver converged quickly
* 2: solver converged slowly

	
print_report(simstep)

	Print a report on the solver status at a certain simulation time
step.

	Parameters:

	simstep – index of simulation timestep for which the report
is generated

	Returns:

	None

	
class fonsim.core.solver.ImplicitEulerNewtonAdaptiveTimeStep(simulation, step, step_min, step_max, max_attempts=200)

	Bases: ImplicitEulerNewton

	
delta_in_range(delta)

	Check whether a change in simulation variables (both arguments
and states) during a step is within an acceptable range compared
to the other simulation step results or it is abnormally large

	Parameters:

	delta – vector with change in all the arguments between
consecutive simulation steps

	Return in_range:

	True if delta is of an acceptable magnitude and
False if it represents a change which is abnormally large

	
get_nb_steps_estimate()

	
	Returns:

	number of timesteps the solver thinks it will need to
finish the simulation

	
run_step(simstep)

	Run a single step of the solver.
Note: Calling it at step n (‘simstep’ = n)
results in it writing to the next step,
aka step n+1

	Parameters:

	simstep – index of timestep with the last simulated results

	Returns:

	list with as elements:
* 0: boolean showing solver convergence for the simulation step
* 1: string giving more information about the exit status

	
update_delta_range(nb_points, delta)

	Update the average and variance of the changes of simulation
variables (both arguments and states) over all simulation steps
with the change at the current step

	Parameters:

	
	nb_points – amount of steps included in the last metrics

	delta – new change in simulation arguments between
consecutive steps to include in the metrics

	Returns:

	None

	
class fonsim.core.solver.ImplicitEulerNewtonConstantTimeStep(simulation, step)

	Bases: ImplicitEulerNewton

	
get_nb_steps_estimate()

	
	Returns:

	number of timesteps the solver needs

	
run_step(simstep)

	Run a single step of the solver.
Note: Calling it at step n (‘simstep’ = n)
results in it writing to the next step,
aka step n+1

	Parameters:

	simstep – index of simulation timestep with the last results

	Returns:

	None

fonsim.core.system module

Class System

2020, July 22

	
class fonsim.core.system.System(label=None)

	Bases: object

A System is a collection of interconnected components.
It contains the Component objects
and keeps track of how they are connected to each other.
A System with components is created
by first creating the System object,
then adding components to this object
and finally connecting these components to each other.

	Parameters:

	label – Label of the system, optional and currently not important.

	
add(*components)

	Add components to the system.

	Parameters:

	components – Component object(s) to be added to the system

	Returns:

	None

	
connect(*args)

	Connect two or more components together
by connecting their terminals.
In case terminals are not
specified directly, the Component objects decide on which of
their terminals to connect.
The connections are made in sequential pairs
using the method System.connect_two_components
which in turn uses the method self.connect_two_terminals.

The components and/or terminals to connect should be
as specified in the method System.get_component_and_terminal.

For instead connecting all components to a common Node,
use the method System.connect_common.

	Parameters:

	args – component terminals

	Returns:

	None

	
connect_common(*args)

	Connect two or more component terminals together. In case terminals are not
specified directly, the Component objects decide on which of
their terminals to connect.
All Terminals are connected to each other,
aka to a common Node.
Making the connection is handled with the method self.connect_two_terminals.

The components and/or terminals to connect should be
as specified in the method System.get_component_and_terminal.

For instead making sequential connections, use the method System.connect.

	Parameters:

	args – component terminals

	Returns:

	None

	
connect_two_components(component_a, component_b)

	Connect two Components to each other.
The connection is made using the method self.connect_two_terminals.

The component arguments component_a and component_b can be
as specified in the method System.get_component_and_terminal.

	Parameters:

	
	component_a – First component, see description

	component_b – Second component, see description

	Returns:

	None

	
connect_two_terminals(terminal_a, terminal_b)

	Connect two system terminals together in a Node.
These nodes exist for the workings of the solver
and have nothing to do with any nodes in the fluidic networks being simulated.

	Parameters:

	
	terminal_a – Terminal object

	terminal_b – Terminal object

	Returns:

	None

	
get(component_label)

	
	Parameters:

	component_label – Label of the desired component.

	Returns:

	Component object with the given label.

	
get_component_and_terminal(arg)

	Get a pair of a Component and a Terminal
given an argument arg.
This argument can be:

	a string specifying a component label present in the system

	a Component object

	a Terminal object

	a Tuple with first the component label and then the terminal label as strings

If multiple choices are available, this method
may make an undefined choice.

	Parameters:

	arg – see desription

	Returns:

	Component object, Terminal object

	
get_connectivity_message()

	Get a message describing the connectivity of the system
in case not every component is connected together.

	Returns:

	message string

fonsim.core.terminal module

Class Terminal

2020, July 22

	
class fonsim.core.terminal.Terminal(label, variables, variable_labels={})

	Bases: object

Component connection point with local through and across variables.

Note: In any particular Terminal object,
there cannot be more than one variable with the same key.

	Parameters:

	
	label – Label to refer to the Terminal later on. Free to choose.

	variables – Variable objects that will belong to the Terminal.

	
get_variable(key)

	Return the variable object attached to the terminal with the
provided key, for example ‘pressure’.
If there is no variable with the requested key,
None is returned.

	Parameters:

	key – key of the variable to return

	Return variable:

	attached variable with the matching key

	
get_variables(orientation=None)

	Get list of all terminal variables with the given orientation.
The orientation can be either “through” or “across”. If not
provided or None, all variables regardless of orientation are
returned

	Parameters:

	orientation – optional string specifying desired
variable orientation

	Returns:

	list of Variable objects

fonsim.core.variable module

Class Variable

2020, July 21

	
class fonsim.core.variable.Variable(key, orientation, initial_value=0.0, terminal=None, label='None')

	Bases: object

A Variable object is used to denote the presence of a yet unknown numerical value.
For each Variable object, the solver will search for the optimal numerical values over time.
The solver does so by solving the system of equations that connect these variables together.
The variables are connected by each other
by connecting the Terminal objects that contain the values to each other.

The parameter ‘key’ indicates the type label.
Only Variable objects with the same type label can exchange information.

The parameter ‘orientation’ should have value ‘across’ or ‘through’ or ‘free’.
‘across’ indicates that the value of the Variable will be shared
with the Variable belonging to the other Terminal
while ‘through’ indicates that its negative will be shared.
The former is typically used with nondirectional values,
such as pressure,
while the latter is typically used with directional values,
such as a massflow.
‘local’ indicates that it will not be shared (feature WIP).

	Parameters:

	
	key – type label, e.g. ‘pressure’, ‘massflow’

	orientation – ‘across’, ‘through’ or ‘free’.

	initial_value – Initial value, default: 0

	terminal – Terminal object to which Variable object get connected, default: None

	
copy_and_attach(terminal)

	Return a copy of the variable object attached to a given terminal.
The returned variable has the same key, orientation and initial value
but is otherwise unrelated to the Variable object
it is called upon.

	Parameters:

	terminal – Terminal object to attach the variable copy to

	Return variable:

	attached copy of the variable object

	
short_str(nb_var_chars=1)

	Return a short string describing the variable more as a symbol than in
words. This string contains the first n letters of the variable name
as well as (if applicable) the port and component it is attached to.

	Parameters:

	nb_var_chars – number of characters with which the variable key
is abbreviated. Set to 0 to avoid abbreviation.

	Return var_str:

	short string representing the variable

Module contents

2020, September 17

Footnotes

fonsim.components package

Submodules

fonsim.components.actuators module

2020, July 21

	
class fonsim.components.actuators.FreeActuator(label=None, fluid=None, curve=None, initial_volume=None)

	Bases: Component

An actuator with a custom pressure-volume relationship
specified as a pressure-volume curve or pv-curve.
It is named ‘free’ because the actuator cannot drive anything,
at least in this simulation.
It has two terminals ‘a’ and ‘b’.
It has one state ‘mass’ that represents the mass of fluid
inside the actuator.

The argument fluid should be one of the fluids defined in the module fluids.

The argument curve should point to a pressure-volume curve (pv-curve)
that describes the pressure-volume relationship of the actuator.
It can be:

	a filename of a CSV file

	a PVCurve object

	an object that behaves sufficiently like a PVCurve object

Concerning the latter option, the object should provide the following methods:

	get_initial_volume(p0)

	fdf_volume(volume)

	Parameters:

	
	label – label

	fluid – fluid

	curve – pressure-volume curve (pv-curve)

	
fonsim.components.actuators.freeactuator_compressible(self: FreeActuator)

	Init function, part specifically for compressible fluids.

	Parameters:

	self – FreeActuator object

	Returns:

	None

	
fonsim.components.actuators.freeactuator_incompressible(self: FreeActuator)

	Init function, part specifically for incompressible fluids.

	Parameters:

	self – FreeActuator object

	Returns:

	None

fonsim.components.circulartube_autodiff module

2020, July 21

	
class fonsim.components.circulartube_autodiff.CircularTube_autodiff(label=None, fluid=None, length=0.6, diameter=0.002, roughness=1.5e-06)

	Bases: Component

Tube modeled as an elongated cylindrical shape.
The terminal labels are ‘a’ and ‘b’.
It is stateless (the kinetic energy of the fluid in the tube is neglected).

The fluid should be one of the fluids defined in the module fluids.

	TODO:
	
	include kinetic energy of fluid in tube

	Parameters:

	
	label – label

	fluid – fluid

	length – length in m

	diameter – internal diameter in m

	roughness – wall roughness in m

	
fonsim.components.circulartube_autodiff.circulartube_compressible(self: CircularTube_autodiff)

	Init function, part specifically for compressible fluids.

	Parameters:

	self – CircularTube object

	Returns:

	None

	
fonsim.components.circulartube_autodiff.circulartube_incompressible(self: CircularTube_autodiff)

	Init function, part specifically for incompressible fluids.

	Parameters:

	self – CircularTube object

	Returns:

	None

fonsim.components.containers module

2020, July 21

	
class fonsim.components.containers.Container(label=None, fluid=None, volume=None)

	Bases: Component

A Container object is a (by default, empty) container or tank.
It has one terminal named ‘a’.
It has one state named ‘mass’,
which represents the mass of the fluid inside the container.

The fluid should be one of the fluids defined in the module fluids.
A Container object is mostly useful with compressible fluids.

	Parameters:

	
	label – label

	fluid – fluid

	volume – volume of the container in m^3.

	
fonsim.components.containers.container_compressible(self: Container)

	Init function, part specifically for compressible fluids.

	Parameters:

	self – Container object

	Returns:

	None

	
fonsim.components.containers.container_incompressible(self: Container)

	Init function, part specifically for incompressible fluids.

	Parameters:

	self – Container object

	Returns:

	None

fonsim.components.containers_autodiff module

2020, July 21

	
class fonsim.components.containers_autodiff.Container_autodiff(label=None, fluid=None, volume=None)

	Bases: Component

A Container object is a (by default, empty) container or tank.
It has one terminal named ‘a’.
It has one state named ‘mass’,
which represents the mass of the fluid inside the container.

The fluid should be one of the fluids defined in the module fluids.
A Container object is mostly useful with compressible fluids.

	Parameters:

	
	label – label

	fluid – fluid

	volume – volume of the container in m^3.

	
fonsim.components.containers_autodiff.container_compressible(self: Container_autodiff)

	Init function, part specifically for compressible fluids.

	Parameters:

	self – Container object

	Returns:

	None

	
fonsim.components.containers_autodiff.container_incompressible(self: Container_autodiff)

	Init function, part specifically for incompressible fluids.

	Parameters:

	self – Container object

	Returns:

	None

fonsim.components.dummy module

Dummy component for testing.
Has one terminal such that system connectivity can be tested.
2022, May 06

	
class fonsim.components.dummy.Dummy(label=None)

	Bases: Component

	
evaluate(values, jacobian_state, jacobian_arguments, state, arguments, elapsed_time)

	Evaluates the component internal equations.
This method should be static.

Note: only evaluate left-hand side (LH) of equation, equation should be structured such that RH is always zero.

	Parameters:

	
	values – array where the equation residuals will be stored.

	jacobian_state – array where the jacobian to the state will be stored.

	jacobian_arguments – array where the jacobian to the arguments will be stored.

	state – numerical values belonging to the state Variables.

	arguments – numerical values belonging to the Variables.

	elapsed_time – ? TODO.

	Returns:

	None

fonsim.components.restrictors module

2020, July 21

	
class fonsim.components.restrictors.CircularTube(label=None, fluid=None, length=0.6, diameter=0.002, roughness=1.5e-06)

	Bases: Component

Tube modeled as an elongated cylindrical shape.
The terminal labels are ‘a’ and ‘b’.
It is stateless (the kinetic energy of the fluid in the tube is neglected).

The fluid should be one of the fluids defined in the module fluids.

	TODO:
	
	include kinetic energy of fluid in tube

	Parameters:

	
	label – label

	fluid – fluid

	length – length in m

	diameter – internal diameter in m

	roughness – wall roughness in m

	
class fonsim.components.restrictors.FlowRestrictor(label=None, fluid=None, diameter=0.002, k=0.6)

	Bases: Component

Flow restrictor modeled as an orifice with a K-factor.
Terminals are named ‘a’ and ‘b’.
It is stateless.

The fluid should be one of the fluids defined in the module fluids.

	Parameters:

	
	label – label

	fluid – fluid

	diamter – diameter of orifice

	k – K-factor

	
fonsim.components.restrictors.circulartube_compressible(self: CircularTube)

	Init function, part specifically for compressible fluids.

	Parameters:

	self – CircularTube object

	Returns:

	None

	
fonsim.components.restrictors.circulartube_incompressible(self: CircularTube)

	Init function, part specifically for incompressible fluids.

	Parameters:

	self – CircularTube object

	Returns:

	None

	
fonsim.components.restrictors.flowrestrictor_compressible(self: FlowRestrictor)

	Init function, part specifically for compressible fluids.

	Parameters:

	self – FlowRestrictor object

	Returns:

	None

	
fonsim.components.restrictors.flowrestrictor_incompressible(self: FlowRestrictor)

	Init function, part specifically for incompressible fluids.

	Parameters:

	self – FlowRestrictor object

	Returns:

	None

fonsim.components.sources module

2020, July 21

	
class fonsim.components.sources.MassflowSource(label=None, fluid=None, massflow=None)

	Bases: Component

Ideal massflow source.
The massflow exactly equals the desired massflow.
The pressure is limited to positive values.
It has one terminal ‘a’ and is stateless.

The argument ‘massflow’ should be either a constant value
or a callable method that takes a single argument,
the argument being the elapsed time since the simulation start.

The argument fluid should be one of the fluids defined in the module fluids.

	Parameters:

	
	label – label

	fluid – fluid

	massflow – desired massflow

	
evaluate(values, jacobian_state, jacobian_arguments, state, arguments, elapsed_time)

	Evaluates the component internal equations.
This method should be static.

Note: only evaluate left-hand side (LH) of equation, equation should be structured such that RH is always zero.

	Parameters:

	
	values – array where the equation residuals will be stored.

	jacobian_state – array where the jacobian to the state will be stored.

	jacobian_arguments – array where the jacobian to the arguments will be stored.

	state – numerical values belonging to the state Variables.

	arguments – numerical values belonging to the Variables.

	elapsed_time – ? TODO.

	Returns:

	None

	
class fonsim.components.sources.PressureSource(label=None, fluid=None, pressure=None)

	Bases: Component

Ideal pressure source.
The pressure exactly equals the desired pressure
and the flow is unlimited.
It has one terminal ‘a’ and is stateless.

The argument ‘pressure’ should be either a constant value
or a callable method that takes a single argument,
the argument being the elapsed time since the simulation start.

The argument fluid should be one of the fluids defined in the module fluids.

	TODO
	
	Limit pressure to positive values.

	Parameters:

	
	label – label

	fluid – fluid

	pressure – desired pressure

	
evaluate(values, jacobian_state, jacobian_arguments, state, arguments, elapsed_time)

	Evaluates the component internal equations.
This method should be static.

Note: only evaluate left-hand side (LH) of equation, equation should be structured such that RH is always zero.

	Parameters:

	
	values – array where the equation residuals will be stored.

	jacobian_state – array where the jacobian to the state will be stored.

	jacobian_arguments – array where the jacobian to the arguments will be stored.

	state – numerical values belonging to the state Variables.

	arguments – numerical values belonging to the Variables.

	elapsed_time – ? TODO.

	Returns:

	None

	
class fonsim.components.sources.VolumeflowSource(label=None, fluid=None, volumeflow=None)

	Bases: Component

Ideal volumeflow source.
The volumeflow exactly equals the desired volume flow.
The pressure is limited to positive values.
It has one terminal ‘a’ and is stateless.

The value ‘volumeflow’ should be either a constant value
or a callable method that takes a single argument,
the argument being the elapsed time since the simulation start.

The fluid should be one of the fluids defined in the module fluids.

	TODO
	
	Limit pressure to positive values.

	Parameters:

	
	label – label

	fluid – fluid

	volumeflow – desired volumeflow

	
fonsim.components.sources.volumeflowsource_compressible(self: VolumeflowSource)

	Init function, part specifically for compressible fluids.

	Parameters:

	self – VolumeflowSource object

	Returns:

	None

	
fonsim.components.sources.volumeflowsource_incompressible(self: VolumeflowSource)

	Init function, part specifically for incompressible fluids.

	Parameters:

	self – VolumeflowSource object

	Returns:

	None

Module contents

2020, September 9

Footnotes

fonsim.data package

Submodules

fonsim.data.curve module

Class Curve

2020, September 1

	
class fonsim.data.curve.Curve(data, key_x, key_f, convert_to_base_si=False, autocorrect=False, **interpolation_opts)

	Bases: object

Class to ease working with pv- and pn-curves
and similar curves

	Parameters:

	data – filepath to CSV file or DataSeries-like object

	
autocorrect(arg)

	TODO implement autocorrect here
I made this a separate function
such that child classes can modify the data as they want
before they use the autocorrect functionality.

	Return None:

	

	
fdf(x)

	Readout f(x)

	Parameters:

	x – x

	Returns:

	f, df

fonsim.data.dataseries module

Class DataSeries

2020, September 1

	
class fonsim.data.dataseries.DataSeries(filename, bytestring=None)

	Bases: object

Class to load and hold tabular data from CSV file.
Numerical data is stored in numpy arrays as floats.
Labels and units are stored in Python lists

	Parameters:

	
	filename – path to file to read or, if bytestring given, filetype

	bytestring – bytestring with file data

	
load_data(filename, bytestring=None)

	Load in data. Provide a filename or byte string.
If providing a byte string, provide the filetype extension (e.g. .csv)
to the filename argument such that the formatting of the bytestring can be determined.

	Parameters:

	
	filename – path to file to read or, if bytestring given, filetype

	bytestring – bytestring with file data

	Returns:

	None

fonsim.data.interpolate module

Function interpolate_fdf

2020, September 4

	
fonsim.data.interpolate.interpolate_fdf(x, xs, ys, extrapolate=False, extrapolate_derivative=False, method='linear')

	Quickly interpolate a dataseries
and return both interpolated value
and its derivative.

Arrays xs, ys can be Numpy arrays,
yet any object that allows indexing can be used,
such as Python lists.

Method: linear or quadratic
Search: bisection

	TODO
	
	Document pchip method.

	Document extrapolation options.
The current naming is not great, as choosing ‘False’ for extrapolation
results in a zero-order extrapolation.
Better to use numbers, e.g. ‘-1’ for no extrapolation (throw error),
‘0’ for zero-order extrapolation and ‘1’ for linear extrapolation?

	Shorten parameters extrapolate and extrapolate_derivative?

	Parameters:

	
	x – x value to interpolate at

	xs – x dataseries

	ys – y dataseries

	extrapolate – True or False

	extrapolate_derivative – True or False

	method – ‘linear’ or ‘quadratic’

	Returns:

	f and df/dx, both evaluated at x

Note

Given that this function is used very often,
it is written with the eye on fast execution
rather than modularity and good looks.

fonsim.data.pvcurve module

Class PVCurve

2020, September 4

	
class fonsim.data.pvcurve.PVCurve(data, pressure_reference='relative', autocorrect=False, **interpolation_opts)

	Bases: Curve

Class to ease working with pv-curves

Warning: original data in DataSeries object may be modified by this function.
Take a deepcopy if modification undesirable.

The autocorrect functionality provides a little tool
to correct measurement data.
Parameter autocorrect should be a tuple of length two
(respectively volume and pressure)
or a scalar.
The elements of this tuple, or the scalar, can be:

	False: No correction applied.

	True: Default correction applied.
For volume, the volume at index 0 will equal zero.
For pressure,
the pressure at index 0 will equal standard atmospheric pressure.

	A scalar value: Default correction is applied
whereafter an offset with the given value is applied.
Units are m^3 for volume and Pa for pressure.

	A function: The function is applied to the value series.
The function should take the value series as argument
and should return the new value series.

Note: the pressure_reference parameter looses its effect
when autocorrect is applied to pressure.

Note: The volume data sequence should be increasing or decreasing,
otherwise the interpolation function will not work.

Example:

import fonsim

Create PVCurve object
curve = fonsim.data.pvcurve.PVCurve('mypvcurvefile.csv',
 pressure_reference='relative', autocorrect=True)

Readout the absolute pressure and its derivative to volume
at volume 3.8e-6 m^3 (= 3.8 ml)
p, dp_dv = PVCurve.fdf_volume(3.8e-6)

TODO Discuss format of CSV file.

	Parameters:

	
	data – filepath to CSV file or DataSeries-like object

	pressure_reference – “relative” or “absolute”

	autocorrect – see description

	interpolation_opts – kwargs for interpolation function

	
fdf_volume(volume)

	Readout the pressure for a given volume

	Parameters:

	volume – volume in [m3]

	Returns:

	f, df

	
get_initial_volume(p0)

	Get the volume of the first datapoint on the curve that
approaches the provided pressure value the closest

TODO what is this function used for?

	Parameters:

	p0 – pressure at which to find the first matching volume

	Returns:

	first closest matching volume

fonsim.data.writeout module

Function writeout_simulation

2020, September 9

	
class fonsim.data.writeout.Bank

	Bases: object

	
add(obj)

	Add an object. Object does not have to be hashable.
:param obj: object
:return: index of object, integer

	
indices()

	Return all indices pointing to objects.
:return: all indices, Python range

	
fonsim.data.writeout.writeout_simulation(filename, simulation)

	Write out simulation data in components to a file.
Supported formats: JSON.
Format follows from filename extension.

	Parameters:

	
	filename – string with filepath

	simulation – Simulation-like object

	Returns:

	None

===

JSON specification:

{
 "scheme": <string>,
 "general": {
 "date": <timestamp>,
 "hostname": <computer name",
 "version": <version>
 },
 "simulation": {
 "system": {
 "label": <string>,
 "nb components": <integer>
 },
 "solver": {
 "name": <string>,
 },
 "time": <key in "data"
 },
 "components": {
 <component_label>: {
 "terminals": {
 <terminal_label>: {
 "over": {
 <over_label>: <key in "data">
 },
 through": {
 <through_label>: <key in "data">
 }
 },
 ...
 }
 "states": {
 <state_label>: <key in "data">,
 ...
 },
 "time": <key in "data">
 },
 ...
 },
 "data": {
 <key>: <list with numbers>,
 ...
 },
}

Module contents

2020, September 18

Footnotes

fonsim.fluid package

Submodules

fonsim.fluid.fallback module

Tool to easily select the most appropriate fallback fluid

2020, September 10

	
fonsim.fluid.fallback.get_fluid(fluid, fluids_desired)

	
	Parameters:

	
	fluid – Fluid instance

	fluids_desired – Ordered iterable (e.g. list, tuple) of Fluid types

	Returns:

	Fluid instance

	
fonsim.fluid.fallback.select_fallback(fluid, fluids_desired)

	Return given fluid if its type is in fluids_desired.
Otherwise, from all its fallback fluids
return the fluid that is first in fluids_desired.

Note: returns tuple

	Parameters:

	
	fluid – fluid object

	fluids_desired – ordered iterable (e.g. list, tuple) of fluid types

	Returns:

	(fluid object, index of type of fluid object in fluids_desired)

fonsim.fluid.fluid module

Fluid classes for keeping fluid properties

Currently supported types:

	IdealIncompressible

	newtonian

	IdealCompressible

	newtonian, ideal gas

Types in progress:

	Bingham
- example of a non-newtonian one

2019, September 7

	
class fonsim.fluid.fluid.Bingham(name, rho, mu_p, tau_y, fallbacks=None)

	Bases: object

Note: in progress!

	Parameters:

	
	name – name of fluid

	rho – density [kg/m**3]

	mu_p – plastic viscosity [Pa s] (sometimes called Poise, [P])

	tau_y – yield point (YP) (yield shear stress) [Pa]

	fallback – fallback fluid

	
class fonsim.fluid.fluid.Fluid(name)

	Bases: object

	Parameters:

	name – name of fluid

	
select_object_by_fluid(object_by_fluids_compatible)

	Rely on fluid fallback functionality.

Note: select_fallback expects an ordered iterable
by making it a list the dict fluids_desired becomes ordered,
yet a dict has no order of it keys. The made order is thus
not the same as the one defined in the components.

Solution: use OrderedDict in the component definition,
those remember the order of the keys like they were defined.

The function does not crash when giving a standard Dict,
but it won’t be able to respect the order.

	Parameters:

	object_by_fluids_compatible – OrderedDict with (type(fluid), object) pairs

	Returns:

	object

	
class fonsim.fluid.fluid.IdealCompressible(name, rho, mu, fallbacks=None)

	Bases: Fluid

	Parameters:

	
	name – name of fluid

	rho – density at STP conditions [kg/m**3]

	mu – dynamic viscosity [Pa s]

	fallback – fallback fluid

	
class fonsim.fluid.fluid.IdealIncompressible(name, rho, mu)

	Bases: Fluid

	Parameters:

	
	name – name of fluid

	rho – density [kg/m**3]

	mu – dynamic viscosity [Pa s]

Module contents

Footnotes

fonsim.fluids package

Submodules

fonsim.fluids.Bingham module

TODO

fonsim.fluids.IdealCompressible module

Some common compressible fluids at T = 20 °C, p = 1 bar.
These fluids are described as an ideal gas.

	Available:
	
	air

	In progress:
	
	helium (H2)

	nitrogen (N2)

	carbondioxide (CO2)

	oxygen (O2)

2020, September 9

	
fonsim.fluids.IdealCompressible.air = <fonsim.fluid.fluid.IdealCompressible object>

	helium = fluid.IdealCompressible(name=”helium”, rho=0.167, nu=1.17e-4)
nitrogen = fluid.IdealCompressible(name=”nitrogen”, rho=1.17, nu=1.51e-5)
carbondioxide = fluid.IdealCompressible(name=”carbondioxide”, rho=1.81, nu=8.1e-6)

Source: https://www.engineeringtoolbox.com/
oxygen = fluid.IdealCompressible(name=”oxygen”, rho=1.31, nu=1.54e-5)

fonsim.fluids.IdealIncompressible module

Some common incomressible fluids at T = 20 °C, p = 1 bar.

	Available:
	
	water

	In progress:
	
	ethylene_glycol

	ethylene_glycol_30pct

	ethylene_glycol_50pct

	mineral_oil

2020, September 9

	
fonsim.fluids.IdealIncompressible.water = <fonsim.fluid.fluid.IdealIncompressible object>

	ethylene_glycol = fluid.IdealIncompressible(name=”ethylene glycol”, rho=1116, nu=1.91e-5)
ethylene_glycol_30pct = fluid.IdealIncompressible(name=”ethylene glycol 30%”, rho=1038, nu=2.089e-6)
ethylene_glycol_50pct = fluid.IdealIncompressible(name=”ethylene glycol 50%”, rho=1056, nu=3.66e-6)

Source: http://www.fao.org/fileadmin/user_upload/jecfa_additives/docs/monograph13/additive-527-m13.pdf
mineral_oil = fluid.IdealIncompressible(name=”mineral oil”, rho=850, nu=9.75e-4)

Module contents

Footnotes

fonsim.wave package

Submodules

fonsim.wave.custom module

Class CustomWave

2020, September 5

	
class fonsim.wave.custom.Custom(wave_array, time_notation='absolute', kind='previous')

	Bases: object

Custom wave

The argument for wave_array should be a 2D-indexable array-like object
(List, Tuple, numpy.ndarray, etc.)
and contain the time values and the corresponding output values.
One dimension should have size two.
The function is transpose-agnostic.

The argument for time_notation can be ‘absolute’ or ‘relative’.
In case of relative, each time value is relative
to the one before it.

The default argument ‘previous’ for ‘kind’
results in a rectangular wave (zero-order interpolation).
The interpolation is handled using the Scipy method
scipy.interpolate.interp1d
and the available interpolation kinds
therefore are those supported by this Scipy method.
For a complete reference,
see https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html.
From above site (copied 2020, September 5):

Specifies the kind of interpolation as a string
(‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’,
where ‘zero’, ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpolation
of zeroth, first, second or third order;
‘previous’ and ‘next’ simply return the previous or next value of the point)
or as an integer specifying the order of the spline interpolator to use.

To readout the value (and therefore call the interpolation function),
call the created object.

Example:

import fonsim

Create Custom wave object
times: 0.0, 1.0, 1.5 and values: 12, 18, 15
wave_array = [[0.0, 12], [1.0, 18], [1.5, 15]]
mywave = fonsim.wave.custom.Custom(wave_array, time_notation='absolute', kind='previous')

Read it out by calling the object
y = mywave(1.2) # y = array(18.)

	Parameters:

	
	wave_array – indexable object, shape 2 x N or N x 2

	time_notation – ‘absolute’ or ‘relative’

	kind – interpolation kind

	
fonsim.wave.custom.isincreasing(arr)

	Helper function. Returns True if array strictly increasing, False otherwise.

fonsim.wave.wave module

Wave generator functionality.

	Available wave functions:
	
	square

	sine

	triangular

	sawtooth

The input range is [0, 2*pi] and output range is [-1, 1].
These functions are static and thus can be placed outside of the class definition.

	Other functionality:
	
	Function time_to_angle: conversion elapsed time -> angle

	Function wave_custom: for custom waves

2020, September 5

	
fonsim.wave.wave.sawtooth(angle)

	

	
fonsim.wave.wave.sine(angle)

	

	
fonsim.wave.wave.square(angle)

	

	
fonsim.wave.wave.time_to_angle(time, frequency, phase=0)

	Convert an elapsed time to an angle.
Designed to be used with the wave functions
that take an anle as input.

Equation:

angle = ((time · frequency + phase/(2·pi)) % 1) · 2·pi

	Parameters:

	
	time – elapsed time, in s

	frequency – frequency, in Hz

	phase – phase offset, in radians

	Returns:

	angle, in radians

	
fonsim.wave.wave.triangle(angle)

	

	
fonsim.wave.wave.unity(angle)

	

Module contents

2020, September 18

Footnotes

fonsim.visual package

Submodules

fonsim.visual.plotting module

Some tools to make plotting simulation results less repetitive.

2020, September 5

	
fonsim.visual.plotting.plot(axs, sim, label, unit, components)

	Easily plot terminal data of components

	Parameters:

	
	axs – matplotlib plotting axis

	sim – simulation object

	label – variable label, e.g. ‘pressure’

	unit – unit, e.g. ‘bar’

	components – iterable with components or (component, terminal) pairs

	Returns:

	None

	
fonsim.visual.plotting.plot_state(axs, sim, label, unit, components)

	Easily plot state data of components

	Parameters:

	
	axs – matplotlib plotting axis

	sim – simulation object

	label – variable label, e.g. ‘pressure’

	unit – unit, e.g. ‘bar’

	components – iterable with components

	Returns:

	None

Module contents

Footnotes

fonsim.constants package

Submodules

fonsim.constants.norm module

Some constants at norm conditions, such as atmospheric pressure
Please refer to the source of this file
to see the defined constants.

2020, July 21

fonsim.constants.physical module

Some physical constants and parameters, such as the gas constant
Please refer to the source of this file
to see the defined constants.

2020, July 21

Module contents

Footnotes

fonsim.conversion package

Submodules

fonsim.conversion.indexmatch module

Get index of best-matching labels

2020, September 4

	
fonsim.conversion.indexmatch.get_index_of_best_match(unit, candidates)

	Get index of best-matching labels

Note: all labels are converted to strings and lowercase

	Parameters:

	
	unit – base label to compare with

	candidates – list of labels to compare against and get index from

	Returns:

	index of best match

	
fonsim.conversion.indexmatch.similar(a, b)

	

Module contents

Footnotes

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fonsim	

 	
 	
 fonsim.components	

 	
 	
 fonsim.components.actuators	

 	
 	
 fonsim.components.circulartube_autodiff	

 	
 	
 fonsim.components.containers	

 	
 	
 fonsim.components.containers_autodiff	

 	
 	
 fonsim.components.dummy	

 	
 	
 fonsim.components.restrictors	

 	
 	
 fonsim.components.sources	

 	
 	
 fonsim.constants	

 	
 	
 fonsim.constants.norm	

 	
 	
 fonsim.constants.physical	

 	
 	
 fonsim.conversion	

 	
 	
 fonsim.conversion.indexmatch	

 	
 	
 fonsim.core	

 	
 	
 fonsim.core.component	

 	
 	
 fonsim.core.node	

 	
 	
 fonsim.core.setnumpythreads	

 	
 	
 fonsim.core.simulation	

 	
 	
 fonsim.core.solver	

 	
 	
 fonsim.core.system	

 	
 	
 fonsim.core.terminal	

 	
 	
 fonsim.core.variable	

 	
 	
 fonsim.data	

 	
 	
 fonsim.data.curve	

 	
 	
 fonsim.data.dataseries	

 	
 	
 fonsim.data.interpolate	

 	
 	
 fonsim.data.pvcurve	

 	
 	
 fonsim.data.writeout	

 	
 	
 fonsim.fluid	

 	
 	
 fonsim.fluid.fallback	

 	
 	
 fonsim.fluid.fluid	

 	
 	
 fonsim.fluids	

 	
 	
 fonsim.fluids.Bingham	

 	
 	
 fonsim.fluids.IdealCompressible	

 	
 	
 fonsim.fluids.IdealIncompressible	

 	
 	
 fonsim.visual	

 	
 	
 fonsim.visual.plotting	

 	
 	
 fonsim.wave	

 	
 	
 fonsim.wave.custom	

 	
 	
 fonsim.wave.wave	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (fonsim.core.system.System method)

 	(fonsim.data.writeout.Bank method)

 	add_terminals() (fonsim.core.node.Node method)

 	air (in module fonsim.fluids.IdealCompressible)

 	
 	apply_solver_bias() (fonsim.core.solver.ImplicitEulerNewton method)

 	auto() (fonsim.core.component.Component method)

 	auto_state() (fonsim.core.component.Component method)

 	autocorrect() (fonsim.data.curve.Curve method)

B

 	
 	Bank (class in fonsim.data.writeout)

 	
 	Bingham (class in fonsim.fluid.fluid)

C

 	
 	check_issolvable() (fonsim.core.simulation.Simulation method)

 	CircularTube (class in fonsim.components.restrictors)

 	CircularTube_autodiff (class in fonsim.components.circulartube_autodiff)

 	circulartube_compressible() (in module fonsim.components.circulartube_autodiff)

 	(in module fonsim.components.restrictors)

 	circulartube_incompressible() (in module fonsim.components.circulartube_autodiff)

 	(in module fonsim.components.restrictors)

 	Component (class in fonsim.core.component)

 	connect() (fonsim.core.system.System method)

 	connect_common() (fonsim.core.system.System method)

 	connect_two_components() (fonsim.core.system.System method)

 	
 	connect_two_terminals() (fonsim.core.system.System method)

 	Container (class in fonsim.components.containers)

 	Container_autodiff (class in fonsim.components.containers_autodiff)

 	container_compressible() (in module fonsim.components.containers)

 	(in module fonsim.components.containers_autodiff)

 	container_incompressible() (in module fonsim.components.containers)

 	(in module fonsim.components.containers_autodiff)

 	contains_terminal() (fonsim.core.node.Node method)

 	copy_and_attach() (fonsim.core.variable.Variable method)

 	Curve (class in fonsim.data.curve)

 	Custom (class in fonsim.wave.custom)

D

 	
 	DataSeries (class in fonsim.data.dataseries)

 	
 	delta_in_range() (fonsim.core.solver.ImplicitEulerNewtonAdaptiveTimeStep method)

 	Dummy (class in fonsim.components.dummy)

E

 	
 	equation_to_string() (fonsim.core.simulation.Simulation method)

 	evaluate() (fonsim.components.dummy.Dummy method)

 	(fonsim.components.sources.MassflowSource method)

 	(fonsim.components.sources.PressureSource method)

 	(fonsim.core.component.Component method)

 	
 	evaluate_equations() (fonsim.core.simulation.Simulation method)

 	extend_memory() (fonsim.core.simulation.Simulation method)

F

 	
 	fdf() (fonsim.data.curve.Curve method)

 	fdf_volume() (fonsim.data.pvcurve.PVCurve method)

 	fill_network_matrix() (fonsim.core.simulation.Simulation method)

 	FlowRestrictor (class in fonsim.components.restrictors)

 	flowrestrictor_compressible() (in module fonsim.components.restrictors)

 	flowrestrictor_incompressible() (in module fonsim.components.restrictors)

 	Fluid (class in fonsim.fluid.fluid)

 	
 fonsim.components

 	module

 	
 fonsim.components.actuators

 	module

 	
 fonsim.components.circulartube_autodiff

 	module

 	
 fonsim.components.containers

 	module

 	
 fonsim.components.containers_autodiff

 	module

 	
 fonsim.components.dummy

 	module

 	
 fonsim.components.restrictors

 	module

 	
 fonsim.components.sources

 	module

 	
 fonsim.constants

 	module

 	
 fonsim.constants.norm

 	module

 	
 fonsim.constants.physical

 	module

 	
 fonsim.conversion

 	module

 	
 fonsim.conversion.indexmatch

 	module

 	
 fonsim.core

 	module

 	
 fonsim.core.component

 	module

 	
 fonsim.core.node

 	module

 	
 fonsim.core.setnumpythreads

 	module

 	
 fonsim.core.simulation

 	module

 	
 fonsim.core.solver

 	module

 	
 	
 fonsim.core.system

 	module

 	
 fonsim.core.terminal

 	module

 	
 fonsim.core.variable

 	module

 	
 fonsim.data

 	module

 	
 fonsim.data.curve

 	module

 	
 fonsim.data.dataseries

 	module

 	
 fonsim.data.interpolate

 	module

 	
 fonsim.data.pvcurve

 	module

 	
 fonsim.data.writeout

 	module

 	
 fonsim.fluid

 	module

 	
 fonsim.fluid.fallback

 	module

 	
 fonsim.fluid.fluid

 	module

 	
 fonsim.fluids

 	module

 	
 fonsim.fluids.Bingham

 	module

 	
 fonsim.fluids.IdealCompressible

 	module

 	
 fonsim.fluids.IdealIncompressible

 	module

 	
 fonsim.visual

 	module

 	
 fonsim.visual.plotting

 	module

 	
 fonsim.wave

 	module

 	
 fonsim.wave.custom

 	module

 	
 fonsim.wave.wave

 	module

 	FreeActuator (class in fonsim.components.actuators)

 	freeactuator_compressible() (in module fonsim.components.actuators)

 	freeactuator_incompressible() (in module fonsim.components.actuators)

G

 	
 	get() (fonsim.core.component.Component method)

 	(fonsim.core.system.System method)

 	get_all() (fonsim.core.component.Component method)

 	get_all_variables() (fonsim.core.solver.ImplicitEulerNewton method)

 	get_component_and_terminal() (fonsim.core.system.System method)

 	get_connectivity_message() (fonsim.core.system.System method)

 	get_fluid() (in module fonsim.fluid.fallback)

 	get_index_of_best_match() (in module fonsim.conversion.indexmatch)

 	
 	get_initial_volume() (fonsim.data.pvcurve.PVCurve method)

 	get_nb_steps_estimate() (fonsim.core.solver.ImplicitEulerNewtonAdaptiveTimeStep method)

 	(fonsim.core.solver.ImplicitEulerNewtonConstantTimeStep method)

 	get_residual() (fonsim.core.solver.ImplicitEulerNewton method)

 	get_state() (fonsim.core.component.Component method)

 	get_terminal() (fonsim.core.component.Component method)

 	get_variable() (fonsim.core.terminal.Terminal method)

 	get_variables() (fonsim.core.node.Node method)

 	(fonsim.core.terminal.Terminal method)

I

 	
 	IdealCompressible (class in fonsim.fluid.fluid)

 	IdealIncompressible (class in fonsim.fluid.fluid)

 	ImplicitEulerNewton (class in fonsim.core.solver)

 	ImplicitEulerNewtonAdaptiveTimeStep (class in fonsim.core.solver)

 	ImplicitEulerNewtonConstantTimeStep (class in fonsim.core.solver)

 	
 	indices() (fonsim.data.writeout.Bank method)

 	init_matrixconstruction() (fonsim.core.simulation.Simulation method)

 	initialize_memory() (fonsim.core.simulation.Simulation method)

 	interpolate_fdf() (in module fonsim.data.interpolate)

 	isincreasing() (in module fonsim.wave.custom)

L

 	
 	load_data() (fonsim.data.dataseries.DataSeries method)

M

 	
 	map_phi_to_components() (fonsim.core.simulation.Simulation method)

 	map_state_to_components() (fonsim.core.simulation.Simulation method)

 	MassflowSource (class in fonsim.components.sources)

 	merge_node() (fonsim.core.node.Node method)

 	
 module

 	fonsim.components

 	fonsim.components.actuators

 	fonsim.components.circulartube_autodiff

 	fonsim.components.containers

 	fonsim.components.containers_autodiff

 	fonsim.components.dummy

 	fonsim.components.restrictors

 	fonsim.components.sources

 	fonsim.constants

 	fonsim.constants.norm

 	fonsim.constants.physical

 	fonsim.conversion

 	fonsim.conversion.indexmatch

 	fonsim.core

 	fonsim.core.component

 	fonsim.core.node

 	fonsim.core.setnumpythreads

 	fonsim.core.simulation

 	fonsim.core.solver

 	fonsim.core.system

 	fonsim.core.terminal

 	fonsim.core.variable

 	fonsim.data

 	fonsim.data.curve

 	fonsim.data.dataseries

 	fonsim.data.interpolate

 	fonsim.data.pvcurve

 	fonsim.data.writeout

 	fonsim.fluid

 	fonsim.fluid.fallback

 	fonsim.fluid.fluid

 	fonsim.fluids

 	fonsim.fluids.Bingham

 	fonsim.fluids.IdealCompressible

 	fonsim.fluids.IdealIncompressible

 	fonsim.visual

 	fonsim.visual.plotting

 	fonsim.wave

 	fonsim.wave.custom

 	fonsim.wave.wave

N

 	
 	newton_solver() (fonsim.core.solver.ImplicitEulerNewton method)

 	
 	Node (class in fonsim.core.node)

P

 	
 	plot() (in module fonsim.visual.plotting)

 	plot_state() (in module fonsim.visual.plotting)

 	PressureSource (class in fonsim.components.sources)

 	
 	print_equations() (fonsim.core.simulation.Simulation method)

 	print_report() (fonsim.core.solver.ImplicitEulerNewton method)

 	PVCurve (class in fonsim.data.pvcurve)

R

 	
 	run() (fonsim.core.simulation.Simulation method)

 	
 	run_step() (fonsim.core.solver.ImplicitEulerNewtonAdaptiveTimeStep method)

 	(fonsim.core.solver.ImplicitEulerNewtonConstantTimeStep method)

S

 	
 	sawtooth() (in module fonsim.wave.wave)

 	select_fallback() (in module fonsim.fluid.fallback)

 	select_object_by_fluid() (fonsim.fluid.fluid.Fluid method)

 	set_arguments() (fonsim.core.component.Component method)

 	set_initial_values_phi() (fonsim.core.simulation.Simulation method)

 	set_initial_values_state() (fonsim.core.simulation.Simulation method)

 	set_states() (fonsim.core.component.Component method)

 	set_terminals() (fonsim.core.component.Component method)

 	
 	setnumpythreads() (in module fonsim.core.setnumpythreads)

 	short_str() (fonsim.core.variable.Variable method)

 	similar() (in module fonsim.conversion.indexmatch)

 	Simulation (class in fonsim.core.simulation)

 	sine() (in module fonsim.wave.wave)

 	slice_memory() (fonsim.core.simulation.Simulation method)

 	square() (in module fonsim.wave.wave)

 	System (class in fonsim.core.system)

T

 	
 	Terminal (class in fonsim.core.terminal)

 	
 	time_to_angle() (in module fonsim.wave.wave)

 	triangle() (in module fonsim.wave.wave)

U

 	
 	unity() (in module fonsim.wave.wave)

 	update_delta_range() (fonsim.core.solver.ImplicitEulerNewtonAdaptiveTimeStep method)

 	
 	update_state() (fonsim.core.component.Component method)

 	(fonsim.core.simulation.Simulation method)

V

 	
 	Variable (class in fonsim.core.variable)

 	VolumeflowSource (class in fonsim.components.sources)

 	
 	volumeflowsource_compressible() (in module fonsim.components.sources)

 	volumeflowsource_incompressible() (in module fonsim.components.sources)

W

 	
 	water (in module fonsim.fluids.IdealIncompressible)

 	
 	writeout_simulation() (in module fonsim.data.writeout)

 _images/Figure_04.png
.a
a

—— source,

q — actu,

=~

05 10 15 20 25 30 35 40

0.0

g o o o - g =w o
e 59 2 8 38 & 3
& & 4 8 3 3

[4eq] ainssaid [6] ssew [s/6] mopssew

_images/Figure_05.png
— source, a
actu0,a
actu_1,a

actu_1

— actu_0

°
N

n

[1eq] anssaid

°
s 8
s

[6] ssew

0.00
025
0.00

-0.25

[5/6] mopssew

_images/Figure_02.png
mass [g]

massflow [g/s]

pressure [bar]

Simulation results

E — source, a

—— container_0, a
— container_1, a

0.0 02 04 06 08 10 12 14

—— container_0
—— container_1

_images/Figure_03.png
2.0

] © =

[4eq] aunssaid anjosqe

12

10

30 40 50
volume [ml]

20

10

_static/file.png

_images/Figure_06.png
35

2
]

w9 1 g
&] B8 =2

[1w] T J038N1R BWNjOA

20 30 40

volume actuator 0 [ml]

10

_static/minus.png

_static/plus.png

_images/Figure_01.png
mass [g]

massflow [g/s]

pressure [bar]

°

0.10

0.05

0.00

05

0.0

Simulation results

— source_00,a
—— container_00, a

0.00 005 010 015 020 025 030
— —— container_00

0.00 0.05 010 015 020 025 030

—— source_00,a
—— container_00, a

0.00 005 010 015 020 025 030
time [s]

nav.xhtml

 Table of Contents

 		
 Welcome to FONSim’s documentation!

