
FONS: a Python framework for simulating nonlinear inflatable actuator
networks

Arne Baeyens*, Bert Van Raemdonck*, Edoardo Milana, Dominiek Reynaerts and Benjamin Gorissen

Abstract— Soft robots designed within a conventional robotic
framework typically consist of individually addressable compli-
ant actuators that are merged together into a deformable body.
For inflatable soft robots, this comes at a high cost of tethering
which drastically limits their autonomy and versatility. This
cost can be decreased by connecting multiple actuators in a
fluidic network and partially offloading control to the passive
interactions within the network. This type of morphological
control necessitates some of the elements in the network to have
nonlinear characteristics. However a standardized simulation
framework for such networks is lacking. Here, we introduce
the open-source python library FONS (Fluidic object-oriented
network simulator), a tool for simulating fluidic interactions
in lumped fluidic networks of arbitrary size. It is compatible
with both gaseous and liquid fluids and supports analytical,
simulated and measured characteristics for all components.
These components can be defined using a library of standard
components or can be implemented as custom objects following
a modular object-oriented framework. We show that FONS is
capable of simulating a multitude of systems with highly non-
linear components exhibiting morphological control.

I. INTRODUCTION

In traditional robots every degree of freedom is actuated
by a dedicated motor, and control software dictates the goal
trajectory in joint space. In soft robotics, it is challenging
to reproduce a precise trajectory because every actuator is
a continuous structure with infinite degrees of freedom with
only a single controlled input [1]. However, underactuation
also enables individual actuators to automatically adapt to the
environment in useful ways in a paradigm called morpholog-
ical control [2]. On the one hand, many soft robots embrace
morphological control on the level of individual components.
For example, soft bending actuators can grasp objects of un-
known shape without sensory feedback. On the other hand, at
the system level these robots often still follow the traditional
architecture where every individual actuator is controlled
explicitly. For inflatable soft robots, the weight of a plethora
of pressure supply tubes and valves, that are necessary in
this architecture, excessively loads the compliant body of
the robot and is detrimental for the performance [3], [4]. To
overcome these limitations, researchers have implemented
morphological control on a system level as well, allowing
multiple actuators to be controlled via a single input.

For systems of inflatable actuators, one source of morpho-
logical control are actuators with peak-and-valley pressure-
volume (PV) curves. When connected to a pressure input,
these actuators inflate in a discrete sequence in the order of

* These authors contributed equally to this work.
All authors are with Department of Mechanical Engineering, KU Leuven,

Leuven, Belgium and members of Flanders Make. Edoardo Milana is also
with livMaTs@FIT, University of Freiburg, Freiburg, Germany

Corresponding author: benjamin.gorissen@kuleuven.be

increasing peaks and deflate in order of decreasing valleys
[5]–[7]. This mechanism was applied in a self-propelling
endoscope [8], a trotting robot [9], and artificial cilia [10].
Another source of morphological control can be found in the
fluidic resistances between actuators. This resistance can be
constant [11] or can change with the direction of the flow
[12] and with the pressure differential over the component
[13], which can be harnessed to generate locomotion from a
single pressure input. A persistent trend in these systems is
that more rich nonlinearities produce more complex behavior,
allowing a greater reduction in the control hardware.

For all of these systems, designing them in function of a
desired behavior requires precise tuning of the component
characteristics. This tuning can be perfected experimentally
by iteratively prototyping robots with different parameters
(top arrow on Fig. 1), but that approach is often too costly
and time intensive. Another approach is fully in-silico with
multi-physics simulations featuring turbulent flows, large
deformations and fluid-structure interactions, but such mod-
els are not mature enough to be integrated in a design
loop. The most practical way to design fluidic systems with
morphological control is through lumped modeling. In this
framework, the robot is discretized into a network of compo-
nents described by few variables. Usually, it is sufficient to
only consider the fluidic interactions between these compo-
nents governed by Kirchoff equations in terms of pressures
and flows [7], [9]. These variables can be mapped to the
resulting deformations using component specific mechanical
models, but this does not affect the interaction between the
components. Consequently, a lumped fluidic network model
is highly modular so simulated and measured characteristics
can be combined to produce accurate and fast simulations of
the system over time (bottom arrow on Fig. 1).

Nearly all publications on morphologically controlled in-
flatable soft robots employ lumped network models to great
success. However, each of these publications uses a dedicated
simulator tailored to the specific needs of the analyzed
systems. As an alternative, software packages like spice [14],
modelica [15] and simulink [16] allow to analyze generalized
networks, but they do not include domain knowledge on flu-
idic soft robots. In conclusion, no modeling tool exists with
all of the following features necessary for the general design
of nonlinear fluidic networks for morphological control:

(i) Support for networks of arbitrary size and connectivity.
(ii) Support for inflatable actuators [5], [11], [17], [18],

interconnections [13], [19], sources and fluids with
arbitrary properties

(ii) Straightforward syntax and structure allowing non-
experts to easily define new components and write
interfaces to other programs.

experimental
analysis

computational
analysis

inverse
design

fluidic input

soft robot design with
morphological control

lumped
network model

pressures, volumes,
displacements

FONS: fluidic
network simulator

prototyping

Find equilibrium
p1 = interp1(pres, vol
p2 = p1
v1 = interp1 (volume,
v2 = vtot - v1

calculate energy

time

p1

V3

d5

soft robot

output =
trotting forward

functionality

pin

Fig. 1. Designing soft robots with morphological control. The response of a soft robot to a fluidic input can be characterized experimentally on a prototype
(top) or computationally on a lumped network model (bottom). The latter approach is orders of magnitude faster than the former, which allows for inverse
design of a robot with a certain desired functionality

To bridge this gap, we introduce FONS (Fluidic Object-
oriented Network Simulator), an open-source Python toolbox
that incorporates all these features. Given the relation
between pressure and flow for each component in a soft
robot, it predicts the change of these variables over time,
which can be mapped to the deformation of the soft robot.
Its use is limited to systems that can be clearly separated into
components that interact with each other through Kirchoff
equations but do not feature mechanical coupling or spatially
varying flow fields at the interface. However, since this
simplification applies for most soft robots, FONS is a key
tool that assists soft robot researchers in designing soft
robots that use morphological control in the fluidic domain
to generate useful deformation sequences with a minimum
of inputs. In the next section, we describe the internal
structure of FONS by means of a practical example code.
Afterwards, we present the results of a number of simulations
run on a nonlinear fluidic network with FONS. They show
how the majority of behaviors described in literature on
morphological control can be reproduced by changing a
few lines of code. Lastly we experimentally benchmark the
performance of FONS using a recently published artificial
cilia system that exhibits morphological control [10].

II. METHODS

FONS takes inspiration from general lumped network
simulators to create a specialized tool for soft robots. From
these general simulators, FONS takes the network analysis
theory and implements it in a transparent way by having a
separate Python object for every concept found in that theory.
This means that, in a top-down perspective, a simulation in
FONS is carried out by a Simulation object operating on
a System object. Such a system represents a fluidic network
and is a collection of Component and Node objects.
Components can be thought of as physical actuators, valves,
sources, etc. while nodes are an abstract representation of
a location where these objects are connected together. In
FONS, a component thus has a set of Terminal objects
which represent their input/output ports to the external world,
while a node records which terminals are connected together.
Finally, on the lowest level, each terminal features a pair of

fundamental Variable objects. These fundamental vari-
ables are through variables, which sum up to zero for all
terminals connected to a node, and across variables, which
are equal for all terminals connected to a node.

The specialization of this general framework towards flu-
idic networks occurs at the level of the Component object.
At this level, a straightforward definition of component
characteristics can be done by using the through and across
variables which for fluidic networks correspond to mass flow
rate and pressure, respectively. Moreover, these characteristic
can be modified based on the Fluid object that is attributed
to the component, which is a unique feature of fluidic
networks. As such different characteristics can be encoded
based on the characteristic of this fluid object. Finally, FONS
comes with a library of common fluidic components which
can be used as is, or as building blocks to define new
components thanks to the object-oriented implementation.

To explain how this works in practice, we analyze an
elementary fluidic network consisting of a pressure source
(one terminal), a pressure supply tube (two terminals) and an
inflatable actuator (one terminal) (see Fig. 2). This network
is modeled in FONS using a 44-line script (see section V),
which we examine line by line in the following sections.

A. Initialization (lines 1-3)

FONS can be installed with PIP, the package installer for
Python, using the command pip install fonsim. To
use it, it has to be imported as is done on line 3 of the script.

pressure
source

line number
in code

fluidic
network

components pressure
supply tube actuator

27-28 29-30
35-36

7-23

Fig. 2. Example of a rudimentary fluidic network that is analyzed using
FONS. The Python code that is needed to generate this example can be
found at the end of this paper, where ’line number in code’ refers to.

B. Component class definition (lines 7-23)

For the purpose of illustration, the example script defines a
simplified version of the Actuator component. In FONS,
this definition consists of four steps. First, a class is created
as a child of the generic Component class on lines 7-9.
This generic class provides an interface to the fluidic system,
which needs a unique label, and an interface to query the
value of the component variables after simulation (line 44).

In the second step, the architecture of the component is
defined by declaring the relevant variables and distributing
them among terminals. Variables are defined by declaring the
physical quantity that they represent (pressure, massflow and
mass) and their role within the context of network analysis
(lines 10-12). These roles can be as through and across
variables for the terminals or as additional local variables.
Local variables can act as notable intermediate quantities in
the component equations (e.g. Reynolds number of flow in a
tube) or can represent the internal state of a component (e.g.
accumulated fluid mass in the Actuator class). Additional
arguments in the definition of a variable are a label for ease of
use later on and an optional value for initializing the solver.
In the example, the pressure is initialized to atmospheric
pressure (line 4) because FONS deals in absolute pressures.
The through and across variables are then assigned to the
terminal labeled a (line 14), while the local variables are
stored directly in the component (line 15).

The third and fourth step consist of describing the internal
relations between the defined variables. In general, these
relations take the shape of a differential-algebraic system
of equations. In FONS, the purely algebraic equations and
the discretized equivalents of the differential equations in
this system are implemented in two different functions. All
purely algebraic equations are implemented in a function
(lines 17-18) assigned to the component evaluate method
(line 19). This function refers to variables by their labels and
can access the simulation time through a variable t. Contrary
to existing simulators for fluidic networks, all equations are
expressed in a residual formulation , which supports implicit
equations and is compatible with common numerical solvers.
In the example, the evaluate method of the Actuator
class contains a single equation interpolating a measured
pressure-volume characteristic represented by a dedicated
PVCurve class (line 32). Residuals can also be generated
by mathematical functions in Python or by external scripts
called from within the evaluate function. Moreover, be-
cause of the object-oriented framework, a component can
inherit evaluate functions from one or multiple library
components. These functions can then be reused or combined
to easily build advanced components.

In the final step, all component relations expressed as or-
dinary differential equations (ode) are discretized and imple-
mented in the update state method (lines 21-23). This
function returns the values in the next time increment for all
component variables that were added with the set states
method (line 15). This means that all ode’s have to be
structured as a system of explicit first-order ode’s and have to
be numerically integrated over time step dt. In the example,
line 22 corresponds to the equation dm/dt = mf . For both

the evaluate and update state method, the FONS
solver requires the derivative of the equations with respect
to the input variables. The user can either provide an exact
formula for this derivative manually or use the component
methods auto (line 19) and auto state (line 23) to
generate a finite difference approximation for the derivatives
of evaluate and update state, respectively.

C. Component instances (lines 26-32)

Both custom classes and classes from the component
library are parametrized templates, so they need to be in-
stantiated with unique labels and concrete parameters before
they are added to the system (lines 26-32). For the actuator,
one such parameter is the PV characteristic defined by data
in a csv file. The pressure source (lines 27-28) is a library
component with as parameter a function of the simulation
time t that returns a pressure profile in terms of absolute
pressure. For the example, this profile is a step function.
The flow restrictor (lines 29-30) is a library component for a
circular tube with a given length and diameter. It implements
the Darcy-Weisbach equation with the friction factor given
by Poiseuille’s law for laminar flow [9] and by the Haaland
approximation [20] for turbulent flow. Depending on the fluid
that flows through the tube, these equations have different
parameters (e.g. viscosity) and forms (e.g. compressible
or incompressible flow). Therefore, many components have
multiple evaluate and update state functions for dif-
ferent types of fluids. The appropriate equations are selected
by methods of the Component class based on a provided
Fluid object that contains both physical parameters and
qualitative aspects (e.g. incompressibility) of a fluid. Stan-
dard fluids like water and air are built into FONS.

D. Component interconnections (lines 35-36)

When a component is added to a system, a Node object
is generated for every component terminal. Connections
between components are then created by merging differ-
ent Node objects together using the system.connect
method. The inputs of this method are the labels of com-
ponents and optionally also of their terminals. In case no
terminal labels are provided, FONS selects the first uncon-
nected terminal of every component. Consequently, on line
36 in the example the actuator is automatically connected to
the other node of the tube than the pressure source.

E. Simulation and results (lines 39-44)

The final step in a network analysis with FONS is to
create a Simulation object on the System instance (line
39). The simulation first generates a mapping between all
Variable objects present in the system and two vec-
tors xd and xa. xd contains the values for all variables
that are updated by the discretized differential equations in
the update state methods of the components and xa

contains the values for all other variables that are purely
algebraic. Internally, these variables are referenced by the
states and arguments attributes of the different compo-
nents, respectively. Next, the simulation constructs a network
matrix Jn implementing the network equations. This matrix
remains constant throughout the course of the simulation. It

has as many columns as xa has elements. For every Node
object to which N terminals are connected, Jn contains
one row stating that the sum of all N through variables
should equal zero to conserve mass and contains N−1 rows
equating all N across variables to each other.

When the simulation is started (line 40), xa and xd

are updated iteratively by a Solver object associated
with the simulation. In every iteration, the solver calls
the evaluate equations method of the Simulation
object. This method implements an implicit Euler scheme
by first updating xd and then evaluating the component
equation residuals with the updated variables using the
update state and evaluate method of every compo-
nent, respectively. The resulting residual vectors are assem-
bled in a single vector f together with the residual of the net-
work equations Jnxa. Apart from the residual, it also assem-
bles the total derivative Ja of f with respect to xa using the
derivatives provided by all evaluate and update state
equations. Finally, evaluate equations returns f and
Ja to the solver which produces the next iteration of xa.

Since the Simulation object provides a straightforward
interface to the system of equations, any nonlinear equation
solver can be used at the back end. Out of the box, FONS
comes with two Solver objects. One implements time
stepping with a constant time increment. The other adapts the
time increment based on the time derivatives of the variables
and the convergence rate for increased robustness to com-
ponent instabilities. Both Solver objects use the Newton-
Raphson algorithm to solve the system of equations at every
time instant. Because this algorithm is robust against noise
on the provided derivatives, the solver converges even for
unfiltered measurement data containing moderate amounts
of noise. Finally, after running the simulation all time values
are accessible in the Simulation.times attribute (line
43) and the values for the variables at those time instants can
be queried using the Component.get method (line 44).

III. RESULTS AND DISCUSSIONS

To illustrate the capabilities of FONS, we use it to analyze
some model problems in Figs. 3–5. For all model problems
we consider a network architecture with a volumetric flow
source, two actuators and two flow restrictors connecting all
components together (architecture in panel A). We subject
this network architecture to nine different simulations. In
every simulation, the source pumps fluid into the system at a
constant volumetric flow rate of 1.8mL/s, then pauses, and
finally pumps the fluid out of the system at the same rate.
This input causes the internal volume of the two actuators
Vact1 and Vact2 to increase and decrease in a certain sequence
(panel C). In the D panels, we visualize this sequence by
tracing the path in {Vact1, Vact2}-space over time for every
simulation. If this path encloses an area, the sequence is
asymmetric between inflation and deflation and otherwise
it is symmetric. Because of the flexibility and robustness
of FONS, swapping out the characteristics of individual
components with a small amount of code yields a range of
qualitatively different sequencing behaviors that covers the
majority of literature on morphological control.

P
V

 c
u

rv
e
s

v
o

lu
m

e
s

o
v
e
r

ti
m

e
v
o

lu
m

e
s

d
is

tr
ib

u
ti

o
n

fl
u

id
ic

 c
ir

cu
itA

B

C

D

Fig. 3. FONS simulation results for a system with actuator characteristics
encoded in a monotonic (blue), peak-valley (orange) and hysteretic (green)
pressure-volume (PV) curve.

Fig. 3 presents three simulations illustrating the effect of
changing the pressure-volume (PV) characteristic of a single
actuator, which in FONS can be easily done by pointing to
a different ‘.csv’ file in the actuator instance creation. In
all three simulations, the flow restrictors have a negligible
resistance and actuator 2 has a monotonic PV characteristic
typical for a soft inflatable bending actuator (Fig. 3B). If
actuator 1 has a similar monotonic characteristic (blue), the
actuators inflate in a symmetrical sequence determined by
their relative compliances [21]. However, if the PV curve of
actuator 1 features a peak and a valley (orange), unstable
exchanges of volume between the actuators occur. Those
instabilities occur at different points on inflation and defla-
tion, so the symmetry is broken [5]. Finally, the asymmetry
increases further if actuator 1 becomes hysteretic (green)
with different PV curves for inflation and deflation separated
by snapping events where volume is redistributed within
the actuator itself. Here we refer to [18] for actuators that
have this hysteretic behaviour. Despite the highly dynamic
snapping events, the each simulation finishes within 0.5 s.

Another way to obtain asymmetric sequences is to harness
the dynamic pressure drop across a flow restrictor. This is
illustrated in Fig. 4 for three systems where the PV curves for

fl
u

id
ic

 c
ir

cu
it

fl
o
w

[m

L/
s]

Q

pressure Δ [kPa]p

10

20

30

40

50

60

70

0 10 20 30 40 50 60

0

20

40

60

0

20

40

60

0

20

40

60

0 5 10 15 20 25 30 35 40

Q
P

 c
u

rv
e
s

v
o

lu
m

e
s

o
v
e
r

ti
m

e
v
o

lu
m

e
s

d
is

tr
ib

u
ti

o
n

Tight tube Tesla valve Snapping valve

0 10 20 30 40 50 60 0 10 20 30 40 50 60

A

B

C

D

Fig. 4. FONS simulation results for a system where two actuators are
connected by a tight tube (blue), an asymmetric tesla valve (orange) and a
hysteretic snapping valve (green) with different relations between volumetric
flow (Q) and pressure drop (∆p).

actuator 1 and 2 always feature a plateau (as in the monotonic
system in Fig. 3) that is lower for 1 than for 2 and where
the pressure-flow characteristic of the restrictor is varied. If
the flow restrictor is modelled analytically as a tight circular
tube with 2.5mm ID (blue), the viscous energy dissipation
in the tube creates a lag between Vact1 and Vact2, which
was used for sequencing in [11]. Next, we consider a Tesla
valve with the same flow resistance as the circular tube if
the fluid flows from actuator 1 to actuator 2, but a higher
resistance if the fluid flows in the opposite direction (orange)
[22]. This results in the same lag on inflation, but a larger
lag on deflation. A third kind of flow restrictor is a snapping
valve (green) which allows fluid to flow between the two
actuators in bursts on inflation and acts like a tight flow
restrictor on deflation, which was used in [13]. In FONS, all
these components are either included in a standard library or
they can be defined easily by building on top of this library.

Fluidic networks also have the unique property that they
function differently depending on what fluid they are filled
with. This is illustrated by three simulations in Fig. 5, where
the peak in the PV curve of actuator 1 is slightly higher
than the peak in actuator 2 and the valley of 1 is much
lower than that of 2. This system also contains tight tubes
as flow restrictors and an accumulator with a fixed internal

volume of 100mL. For a compressible fluid like air (blue),
the accumulator is able to instantaneously supply fluid to
a snapping actuator. This allows both actuators to snap
independently from each other. For an incompressible fluid
like water (orange), however, this is no longer possible and
the volumes of both actuators are coupled with each other.
Therefore, if a snapping event suddenly increases the volume
in one actuator, the volume in the other actuator decreases by
the same amount [5]. Finally, for a viscous fluid like ethylene
glycol (green), the viscous damping in the flow restrictors
eliminates these fast snaps. It also generates a pressure
drop between the actuators that is bigger than the difference
in peaks during inflation but smaller than the difference in
valleys during deflation. Therefore, the sequence is modified
for inflation but not for deflation. These three examples differ
by a single line in a FONS simulation, highlighting the ability
to quickly explore a multitude of actuation behaviors.

Finally, in Fig. 6 we show that the results produced by
FONS are also quantitatively accurate. It compares the
simulated and experimental behavior of a system with four
bending actuators with a nonlinear PV characteristic con-
nected through flow restrictors in response to a trapezoidal
pressure signal generated by a pressure source (Fig. 6A).
Details about the design of and the experimental study on this
system are reported in [10]. For the components used in that
study, we experimentally measure the PV characteristics of
the individual actuators, the pressure-flow curve of a flow
restrictor and the input signal generated by the pressure
source (Fig. 6B). These characteristics are processed with
a low-pass filter and interpolated in the evaluate-method

v
o

lu
m

e
s

o
v
e
r

ti
m

e
v
o

lu
m

e
s

d
is

tr
ib

u
ti

o
n

fl
u

id
ic

 c
ir

cu
itA

B

C

Fig. 5. FONS simulation results for the same system and components in
case it is filled with air (blue), water (orange) or ethylene glycol (green)

Fig. 6. (A) Architecture of a pressure-controlled network with four
nonlinear bending actuators. (B) Experimentally measured characteristics
of the actuators and restrictors. (C) Comparison between experimentally
measured curvatures [10] and a FONS simulation for the same system.

of the corresponding components in FONS. Moreover, we
measure the curvature of each actuator in function of its
internal volume. After running FONS, we use these charac-
teristics to map the change in volume of each actuator to a
curvature that can be compared to the experimental results
of [10]. Even though FONS does not model the inertia or
visco-elasticity of the actuators, there is a good agreement
between the simulation and the experiment (Fig. 6C).

IV. CONCLUSIONS

FONS is a python software library available at
https://pypi.org/project/fonsim/. It provides
a suite of tools to easily define lumped fluidic networks with
nonlinear components and to accurately simulate their fluidic
interactions. The FONS source code follows a transparent
object-oriented framework with a library of standard compo-
nents that can be extended by the user to incorporate new flu-
idic components. Moreover, FONS features a straightforward
high-level interface with other programs. In combination
with robust and fast solving, this allows for integration
in ever more performant design algorithms. As such, we
envision FONS to be not just a source of inspiration in
designing novel fluidic systems with morphological control,
but also a key tool for their inverse design.

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, may 2015.

[2] R. Pfeifer and J. Bongard, “How the Body Shapes the Way We Think,”
in How Body Shapes W. We Think. The MIT Press, 2006.

[3] C. A. Aubin, B. Gorissen et al., “Towards enduring autonomous robots
via embodied energy,” Nature, vol. 602, no. 7897, 2022.

[4] B. Gorissen, D. Reynaerts, S. Konishi, K. Yoshida, J.-W. Kim, and
M. De Volder, “Elastic Inflatable Actuators for Soft Robotic Applica-
tions,” Adv. Mater., p. 1604977, sep 2017.

[5] J. T. B. Overvelde, T. Kloek, J. J. a. D’haen, and K. Bertoldi,
“Amplifying the response of soft actuators by harnessing snap-through
instabilities.” PNAS, vol. 112, no. 35, 2015.

[6] L. Hines, K. Petersen, and M. Sitti, “Inflated soft actuators with
reversible stable deformations,” Adv. Mater., vol. 28, no. 19, 2016.

[7] E. Ben-Haim, L. Salem, Y. Or, and A. D. Gat, “Single-input con-
trol of multiple fluid-driven elastic actuators via interaction between
bistability and viscosity,” Soft Robotics, vol. 7, no. 2, 2020.

[8] D. Glozman, N. Hassidov, M. Senesh, and M. Shoham, “A self-
propelled inflatable earthworm-like endoscope actuated by single
supply line,” IEEE Trans. Biomed. Eng., vol. 57, no. 6, 2010.

[9] B. Gorissen, E. Milana, A. Baeyens, E. Broeders, J. Christiaens,
K. Collin, D. Reynaerts, and M. De Volder, “Hardware Sequencing
of Inflatable Nonlinear Actuators for Autonomous Soft Robots,” Adv.
Mater., vol. 31, no. 3, pp. 1–7, 2019.

[10] E. Milana, B. Van Raemdonck, A. S. Casla, M. De Volder, D. Rey-
naerts, and B. Gorissen, “Morphological control of cilia-inspired asym-
metric movements using nonlinear soft inflatable actuators,” Frontiers
in Robotics and AI, vol. 8, 2021.

[11] N. Vasios, A. J. Gross, S. Soifer, J. T. Overvelde, and K. Bertoldi,
“Harnessing Viscous Flow to Simplify the Actuation of Fluidic Soft
Robots,” Soft Robot., vol. 7, no. 1, 2019.

[12] L. Jin, A. E. Forte, and K. Bertoldi, “Mechanical valves for on-board
flow control of inflatable robots,” Adv. Science, vol. 8, no. 21, 2021.

[13] L. C. van Laake, J. de Vries, S. M. Kani, and J. T. Overvelde, “A
fluidic relaxation oscillator for reprogrammable sequential actuation
in soft robots,” Matter, vol. 5, no. 9, pp. 2898–2917, 2022.

[14] A. Vladimirescu, The SPICE book. Wiley New York, 1994.
[15] P. Fritzson and V. Engelson, “Modelica—a unified object-oriented lan-

guage for system modeling and simulation,” in European Conference
on Object-Oriented Programming. Springer, 1998, pp. 67–90.

[16] J. B. Dabney and T. L. Harman, Mastering simulink. Pearson/Prentice
Hall Upper Saddle River, 2004, vol. 230.

[17] B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shep-
herd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. White-
sides, “Pneumatic networks for soft robotics that actuate rapidly,” Adv.
Funct. Mater., vol. 24, no. 15, pp. 2163–2170, 2014.

[18] B. Gorissen, D. Melancon, N. Vasios, M. Torbati, and K. Bertoldi,
“Inflat. soft jumper inspired by shell snapping,” Sci.Robot, vol. 5, 2020.

[19] A. A. Stanley, A. Amini, C. Glick, N. Usevitch, Y. Mengüç, and
S. J. Keller, “Lumped-parameter response time models for pneumatic
circuit dynamics,” J. Dyn. Syst. Meas. Contr., vol. 143, no. 5, 2021.

[20] S. E. Haaland, “Simple and explicit formulas for the friction factor in
turbulent pipe flow,” 1983.

[21] T. J. Jones, E. Jambon-Puillet, J. Marthelot, and P.-T. Brun, “Bubble
casting soft robotics,” Nature, vol. 599, no. 7884, 2021.

[22] S. Zhang, S. Winoto, and H. Low, “Performance simulations of tesla
microfluidic valves,” in Int. Conf. on Integration and Commercializa-
tion of Micro and Nanosystems, vol. 42657, 2007, pp. 15–19.

V. FONS EXAMPLE IN LESS THAN 50 LINES OF CODE

1 #!/usr/bin/env python3
2 # git hash: 7f50c2c9b9f072169e986547cc1f79a5de746d4d
3 import fonsim as fons
4 p0 = fons.pressure_atmospheric
5
6 # === Create the components ===
7 class Actuator(fons.Component):
8 def __init__(self, label, fluid, pvcurve):
9 super().__init__(label)

10 p_ = fons.Variable(’pressure’, ’across’, label=’p’, initial_value=p0)
11 mf_ = fons.Variable(’massflow’, ’through’, label=’mf’)
12 m_ = fons.Variable(’mass’, ’local’, label=’mass’, initial_value=1e-3)
13
14 self.set_terminals(fons.Terminal(’a’, [p_, mf_]))
15 self.set_states(m_)
16
17 def evaluate(t, p, mass):
18 return [p - pvcurve.fdf_volume(volume=mass/fluid.rho)[0]]
19 self.evaluate = self.auto(evaluate)
20
21 def update_state(dt, mass, mf):
22 return {’mass’: mass + mf * dt}
23 self.update_state = self.auto_state(update_state)
24
25 # === Create the fluidic system ===
26 system = fons.System()
27 system += fons.PressureSource(’source’,
28 pressure=lambda t: p0 + (.3e5 if t<.5 else 0))
29 system += fons.CircularTube(label=’tube’, fluid=fons.water,
30 length=0.60, diameter=1e-3)
31 system += Actuator(’actu’, fluid=fons.water,
32 pvcurve=fons.pvcurve.PVCurve(’actPeakValleyHigh.csv’))
33
34 # Connect the components to each other
35 system.connect(’tube’, ’source’)
36 system.connect(’tube’, ’actu’)
37
38 # == Simulate the system ==
39 sim = fons.Simulation(system, duration=1.)
40 sim.run()
41
42 # Put results in local variables (e.g. for visualization later)
43 t = sim.times
44 p_actu = (system.get(’actu’).get(’pressure’) - p0) * 1e-5

